Carnegie Science, Carnegie Institution for Science, Carnegie Institution, Chlamydomonas, Pyrenoid, EPYC1
Stanford, CA— Algae may hold the key to feeding the world’s burgeoning population. Don’t worry; no one is going to make you eat them. But because they are more efficient than most plants at taking in...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Stanford, CA— Four additional members of Stanford University’s faculty have been named Honorary Adjunct Staff Scientists at Carnegie’s Department of Plant Biology. Stanford’s Dominique Bergmann has...
Explore this Story
Carnegie Science, Carnegie Institution, CRISPR, CRISPR/Cas, CRISPR/Cas9, Devaki Bhaya
Stanford, CA— You’ve probably seen news stories about the highly lauded, much-discussed genome editing system CRISPR/Cas9. But did you know the system was actually derived from bacteria, which use it...
Explore this Story
Stanford, CA— During the daytime, plants convert the Sun’s energy into sugars using photosynthesis, a complex, multi-stage biochemical process. New work from a team including Carnegie’s Mark...
Explore this Story
Washington, DC— More than 1,000 scientists from nonprofit, corporate, academic, and private institutions say public doubts about genetically modified food crops are hindering the next Green...
Explore this Story
Stanford, CA—Carnegie’s Alexander Jones will receive the Tansley Medal for Excellence in Plant Science. The honor includes publishing a short review, an editorial written about his work in the...
Explore this Story
Stanford, CA—Everyone who took high school biology learned that photosynthesis is the process by which plants, algae and select bacteria transform the Sun's energy into chemical energy during the...
Explore this Story
Stanford, CA— Once a mother plant releases its embryos to the outside world, they have to survive on their own without family protection. To ensure successful colonization by these vulnerable...
Explore this Story

Pages

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is...
Explore this Project
Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii....
Explore this Project
Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different...
Meet this Scientist
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching...
Meet this Scientist
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
You May Also Like...
Stanford, CA— Coral reefs are tremendously important for ocean biodiversity, as well as for the economic and aesthetic value they provide to their surrounding communities. Unfortunately they have...
Explore this Story
Washington, D.C.— Postdoctoral fellow, Rubén Rellán-Álvarez at the Department of Plant Biology has been awarded the prestigious Marschner Young Scientist Award by the International Plant Nutrition...
Explore this Story
AudioStanford, CA—Inside every plant cell, a cytoskeleton provides an interior scaffolding to direct construction of the cell’s walls, and thus the growth of the organism as a whole. Environmental...
Explore this Story

Explore Carnegie Science

January 30, 2017

Stanford, CA—New work from Carnegie’s Shouling Xu and Zhiyong Wang reveals that the process of synthesizing many important master proteins in plants involves extensive modification, or “tagging” by sugars after the protein is assembled. Their work uncovers both similarity and distinction between plants and animals in their use of this protein modification. It is published by Proceedings of the National Academy of Sciences.

The blueprint for making all proteins is encoded in DNA. The genetic code tells the cellular protein-making apparatus the correct order in which to string together the amino acids that are the building blocks of every protein. Often, after their DNA code has

Carnegie Science, Carnegie Institution, Carnegie Institution for Science
December 14, 2016

Stanford, CA—Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our environment and food supply.

For many plants, even a small increase in average temperature can profoundly affect their growth and development. In the often-studied mustard plant called Arabidopsis, elevated temperatures cause the plants to grow longer stems and thinner leaves in order to cope with the heat stress.

New work led by Carnegie’s Zhiyong Wang uncovers the system by which plants regulate their response to heat differently between daytime and nighttime. It is published by

October 11, 2016

Stanford, CA—We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are transferred between organisms.

Sometimes a “host” organism can obtain genes from another organism that resides within its own cell (called an endosymbiont) through a process known as endosymbiotic gene transfer. At other times, an organism can obtain genes from a creature that lives in the surrounding environment, or from something that it eats, which is called horizontal gene transfer.

Furthermore, some levels of gene transfer can result in extensive loss of genes and genome reduction,

October 4, 2016

Stanford, CA— A feature thought to make plants sensitive to drought could actually hold the key to them coping with it better, according to new findings published by eLife, from Kathryn Barton of the Carnegie Institution for Science (Department of Plant Biology).

 Plants that are resistant to the hormone abscisic acid (ABA) have until now been understood to be bad at coping with drought. However, Barton and her team have now discovered ABA-resistant varieties that grow better than their normal neighbors when water is scarce. The new research suggests breeders should explore them for “stay green” traits.

 “When breeders are looking for plants able to withstand drought, they

No content in this section.

Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf Frommer,  with a team of researchers from the International Rice Research Institute, Kansas State University, and Iowa State University, will continue to pursue an innovative global health research project, titled “Transformative Strategy for Controlling Rice Blight.”

Rice bacterial blight is one of the major challenges to food security, and this project aims to achieve broad, durable

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve, share resources. To these ends, she focuses on one-celled, aquatic cyanobacteria, in the lab with model organisms and with organisms in naturally occurring communities.

 Phototaxis is the ability of organisms to move directionally in response to a light source.  Many cyanobacteria exhibit phototaxis, both towards and away from light. The ability to move into optimal light for

It’s common knowledge that light is essential for plants to perform photosynthesis—converting light energy into chemical energy by transforming carbon dioxide and water into sugars for fuel. Plants maximize the process by bending toward the light in a process called phototropism, which is particularly important for germinated seedlings to maximize light capture for growth. Winslow Briggs has been a worldwide leader in unraveling the molecular mechanisms behind this essential plant process.

Over a decade ago Briggs and colleagues discovered and first characterized the photoreceptor family that mediates this directional response and named the two members phototropin 1 and

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in repeating units. The structure responsible for

Young investigator Martin Jonikas has broad ambitions: to transform our fundamental understanding of photosynthetic organisms by developing game-changing tools. In the long run, his lab aims to increase photosynthetic efficiency of crops, which could improve food production around the world.

When photosynthesis first evolved, the atmosphere contained much more carbon dioxide and much less oxygen than it does today. As a result, the photosynthetic machinery of many organisms may not be completely optimized for today’s environment.

The protein responsible for fixing carbon dioxide—called Rubisco—worked very well in the Earth’s early atmosphere. As photosynthetic organisms