Washington, D.C. —A key to understanding Earth’s evolution is to look deep into the lower mantle—a region some 400 to 1,800 miles (660 to 2,900 kilometers) below the surface, just...
Explore this Story
Washington, D.C.— Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As...
Explore this Story
Washington, D.C.— A team including Carnegie’s Malcolm Guthrie and George Cody has, for the first time, discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties...
Explore this Story
Washington, D.C.— Gallium arsenide, GaAs, a semiconductor composed of gallium and arsenic is well known to have physical properties that promise practical applications. In the form of nanowires and...
Explore this Story
China has halted exports to Japan of rare earth elements — which are crucial for advanced manufacturing — trading company officials said Friday amid tensions between the rival Asian...
Explore this Story
Washington, D.C. — A team of scientists led by Carnegie’s Lin Wang has observed a new form of very hard carbon clusters, which are unusual in their mix of crystalline and disordered structure....
Explore this Story
AudioWashington, D.C.— Molybdenum disulfide is a compound often used in dry lubricants and in petroleum refining. Its semiconducting ability...
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the...
Meet this Scientist
You May Also Like...
The paradox of the missing xenon might sound like the title of the latest airport thriller, but it’s actually a problem that’s stumped geophysicists for decades.  New work from a...
Explore this Story
Alexander Goncharov's experiment on noble gases could give new insight into the interiors of gas giant planets says Scientific American. More
Explore this Story
Washington, D.C.— A team including Carnegie’s Malcolm Guthrie and George Cody has, for the first time, discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties...
Explore this Story

Explore Carnegie Science

Artist's conception of lead selenide under pressure courtesy of Xiao-Jia Chen.
October 7, 2019

Washington, DC— Pressure improves the ability of materials to turn heat into electricity and could potentially be used to create clean generators, according to new work from a team that includes Carnegie’s Alexander Goncharov and Viktor Struzhkin published in Nature Materials.

Alternative energy sources are key to combating climate change caused by carbon emissions. Compounds with thermoelectric capabilities can convert thermal energy’s innate, physical need to spread from a hot place into a cold place into energy—harvesting electricity from the temperature differential. In theory, generators built from these materials could be used to recover electricity

Journal of Physical Chemistry Letters cover
September 9, 2019

Washington, DC— New materials can contribute potential solutions to many societal issues—from increasing access to clean drinking water to improving solar panel efficiency. But figuring out how to synthesize them can be a difficult process of trial and error.

Carnegie’s Li Zhu, Timothy Strobel, and Ronald Cohen have created a new tool for predicting pathways to novel materials that could speed this process up significantly. A paper demonstrating the method’s effectiveness is a cover story in The Journal of Physical Chemistry Letters.

Called PALLAS after one of the nicknames for Athena, the Greek goddess of wisdom, their method creates a kind of

March 13, 2019

Carolyn Beaumont, a senior at the Potomac School in McLean VA, won 5th place in the 78th Regeneron Science Talent Search. During the summer of 2018, she worked with Geophysical Laboratory staff members George Cody and Bjorn Mysen on a project to shed light on the molecular details of how water interacts with silicate melts. During her time, she learned how to run all aspects of the experiment, including how to operate a piston cylinder pressure apparatus that generates pressures on the order of 1.5 GPa and temperatures in excess of 1400°C. She also used molecular spectroscopy and nuclear magnetic resonance spectroscopy, to obtain detailed

September 20, 2018

A new Venture Grant has been awarded to the Geophysical Laboratory’s Dionysis Foustoukos and Sue Rhee of the Department of Plant Biology, with colleague Costantino Vetriani of Rutgers University for their project Deciphering Life Functions in Extreme Environments.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions. Each grant provides $100,000 support for two years with the hope for surprising outcomes. The grants are generously supported, in part, by trustee Michael Wilson and his wife Jane and by the Ambrose Monell Foundation.

Deep sea hydrothermal vents

No content in this section.

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that can be gleaned from mineral impurities preserved inside diamonds.

Walter

Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials.

For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But normal silicon is not optimal for solar energy. In its conventional crystalline form, silicon is relatively inefficient at absorbing the wavelengths most prevalent in sunlight.  Strobel made a discovery that may turn things around.  Using the high-pressure techniques pioneered at Carnegie, he created a novel form of silicon with its atoms arranged in a cage-like structure. Unlike

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from