Washington, DC— New work from an international team led by Carnegie’s Alexander Goncharov synthesized a new material composed of six nitrogen atoms in a ring, bringing scientists one...
Explore this Story
Guided diamond nanothread synthesis illustrated by Samuel Dunning
Washington, DC— As hard as diamond and as flexible as plastic, highly sought-after diamond nanothreads would be poised to revolutionize our world—if they weren’t so difficult to...
Explore this Story
Fullerene C60 purchased from Shutterstock
Washington, DC—Carnegie’s Yingwei Fei and Lin Wang were part of an international research team that synthesized a new ultrahard form of carbon glass with a wealth of potential practical...
Explore this Story
Silicon in the periodic table courtesy of Shutterstock
Washington, DC—A team led by Carnegie’s Thomas Shiell and Timothy Strobel developed a new method for synthesizing a novel crystalline form of silicon with a hexagonal structure that could...
Explore this Story
CLIPPIR diamonds by Robert Weldon, copyright GIA, courtesy Gem Diamonds Ltd.
Washington, DC— Diamonds that formed deep in the Earth’s mantle contain evidence of chemical reactions that occurred on the seafloor. Probing these gems can help geoscientists understand...
Explore this Story
Stock image of the transition metals section of the periodic table
Washington, DC— You’ve heard the expression form follows function? In materials science, function follows form. New research by Carnegie’s Olivier Gagné and collaborator...
Explore this Story
Washington, DC— Carnegie mineralogist Robert Hazen was inducted last month as a foreign member of the Russian Academy of Sciences—the nation’s highest-level scientific society,...
Explore this Story
Carbon-boron clathrate cage with strontium inside, courtesy Tim Strobel
Washington, DC— A long-sought-after class of “superdiamond” carbon-based materials with tunable mechanical and electronic properties was predicted and synthesized by Carnegie’...
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and...
Meet this Scientist
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
You May Also Like...
Washington, D.C.—Hydrogen is the most abundant element in the universe. The way it responds under extreme pressures and temperatures is crucial to our understanding of matter and the nature of...
Explore this Story
A team of scientists including Carnegie’s Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic molecules,...
Explore this Story
Washington, D.C.— Lyman Thomas Aldrich, 95, who worked as a geophysicist and geochemist at the Carnegie Institution for Science’s Department of Terrestrial Magnetism (DTM) for 34 years, including a...
Explore this Story

Explore Carnegie Science

April 26, 2022

Washington, DC— New work from an international team led by Carnegie’s Alexander Goncharov synthesized a new material composed of six nitrogen atoms in a ring, bringing scientists one step closer to creating a long-theorized, pure-nitrogen solid that could revolutionize energy storage and propulsion. Their findings published last week in Nature Chemistry.

Nitrogen is one of the most common elements in the universe and is abundant in biochemical compounds.  It is notable for the extremely strong triple bond of its elemental form—when two nitrogen atoms join to form N2 gas. This attraction is so strong that despite the abundance of nitrogen in

Guided diamond nanothread synthesis illustrated by Samuel Dunning
March 2, 2022

Washington, DC— As hard as diamond and as flexible as plastic, highly sought-after diamond nanothreads would be poised to revolutionize our world—if they weren’t so difficult to make.

Recently, a team of scientists led by Carnegie’s Samuel Dunning and Timothy Strobel developed an original technique that predicts and guides the ordered creation of strong, yet flexible, diamond nanothreads, surmounting several existing challenges.  The innovation will make it easier for scientists to synthesize the nanothreads—an important step toward applying the material to practical problems in the future. The work was recently published in the Journal of the

Fullerene C60 purchased from Shutterstock
November 24, 2021

Washington, DC—Carnegie’s Yingwei Fei and Lin Wang were part of an international research team that synthesized a new ultrahard form of carbon glass with a wealth of potential practical applications for devices and electronics. It is the hardest known glass with the highest thermal conductivity among all glass materials. Their findings are published in Nature.

Function follows form when it comes to understanding the properties of a material. How its atoms are chemically bonded to each other, and their resulting structural arrangement, determines a material’s physical qualities—both those that are observable by the naked eye and those that are only revealed

Silicon in the periodic table courtesy of Shutterstock
June 3, 2021

Washington, DC—A team led by Carnegie’s Thomas Shiell and Timothy Strobel developed a new method for synthesizing a novel crystalline form of silicon with a hexagonal structure that could potentially be used to create next-generation electronic and energy devices with enhanced properties that exceed those of the “normal” cubic form of silicon used today.

Their work is published in Physical Review Letters.

Silicon plays an outsized role in human life. It is the second most abundant element in the Earth’s crust. When mixed with other elements, it is essential for many construction and infrastructure projects. And in pure elemental form, it is

No content in this section.

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Experimental petrologist Michael Walter became Director of the Geophysical Laboratory beginning April 1, 2018. The lab recently merged with the Department of Terrestrial Magnetism  forming the Earth and Planets Laboratory, where he was Deputy Director until January 2022, when he became Director. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found

Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials.

For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But normal silicon is not optimal for solar energy. In its conventional crystalline form, silicon is relatively inefficient at absorbing the wavelengths most prevalent in sunlight.  Strobel made a discovery that may turn things around.  Using the high-pressure techniques pioneered at Carnegie, he created a novel form of silicon with its atoms arranged in a cage-like structure. Unlike

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical