Nitrogen is the dominant gas in Earth’s atmosphere, where it is most-commonly bonded with itself in diatomic N2 molecules. New work indicate that it becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep insi
Washington, DC—New work from a team led by Carnegie’s Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to the extreme...
Explore this Story
Washington, D.C.--Venkata Srinu Bhadram in Timothy Strobel’s lab at the Geophysical Laboratory (GL) will receive the ninth Postdoctoral Innovation and Excellence Award (PIE). These awards are made...
Explore this Story
Washington, DC—Interim Co-Presidents John Mulchaey and Yixian Zheng are thrilled to welcome experimental petrologist Michael Walter as the new Director of Carnegie's Geophysical Laboratory.   Walter’...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Timothy Strobel
Washington, DC—A team of scientists including Carnegie’s Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Alexander Goncharov, Hanyu Liu, Elissaios Stavrou, Sergey Lobanov, Yansun Yao, Joseph Zaug, Eran Greenberg, Vitali Prakapenka
Washington, DC—The paradox of the missing xenon might sound like the title of the latest airport thriller, but it’s actually a problem that’s stumped geophysicists for decades. New work from an...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Chuanlong Lin, Guoyin Shen
Washington, DC—Water makes up more than 70 percent of our planet's surface and up to 60 percent of our bodies. Water is so common that we take it for granted. Yet water also has very strange...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Venkata Bhadram
Washington, DC—A team of experimental and computational scientists led by Carnegie’s Tim Strobel and Venkata Bhadram have synthesized a long sought-after form of titanium nitride, Ti3N4, which has...
Explore this Story
Washington, DC— New research on oxygen and iron chemistry under the extreme conditions found deep inside the Earth could explain a longstanding seismic mystery called ultralow velocity zones....
Explore this Story

Pages

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and...
Explore this Project
The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech...
Explore this Project
The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois. The integrated HPCAT facility has...
Explore this Project
Dave Mao’s research centers on ultra-high pressure physics, chemistry, material sciences, geophysics, geochemistry and planetary sciences using diamond-anvil cell techniques that he has pioneered. He is also director of the Energy Frontier Research in Extreme Environments (EFree) center at the...
Meet this Scientist
Guoyin Shen's research interests lie in the quest to establish and to examine models for explaining and controlling the behavior of materials under extreme conditions. His research activities include investigation of phase transformations and melting lines in molecular solids, oxides and metals;...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
You May Also Like...
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to...
Explore this Story
Washington, D.C.--Phase transitions surround us—for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Carnegie Institution for Science* have...
Explore this Story
Washington, D.C.— A team of researchers has made a major breakthrough in measuring the structure of nanomaterials under extremely high pressures. For the first time, they developed a way to get...
Explore this Story

Explore Carnegie Science

Nitrogen is the dominant gas in Earth’s atmosphere, where it is most-commonly bonded with itself in diatomic N2 molecules. New work indicate that it becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep insi
July 9, 2018

Washington, DC—New work from a team led by Carnegie’s Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep inside the Earth and other planets. Their findings are published by Nature Communications.

Nitrogen is one of the most-common elements in the universe and is crucial to life on Earth. In living organisms, it is a key part of the makeup of both the nucleic acids that form genetic material and the amino acids that make up proteins. It comprises nearly 80 percent of the Earth’s atmosphere.

But what about how nitrogen behaves in the intense

May 1, 2018

Washington, D.C.--Venkata Srinu Bhadram in Timothy Strobel’s lab at the Geophysical Laboratory (GL) will receive the ninth Postdoctoral Innovation and Excellence Award (PIE). These awards are made through nominations from the departments and are chosen by the Office of the President. The recipients are awarded a cash prize for their exceptionally creative approaches to science, strong mentoring, and contributing to the sense of campus community.

According to Strobel Venkata “is one of the best young scientists in high‐pressure research and is poised to become a world leader in the field.” Venkata started his postdoc in the Energy Frontier Research Center (EFree). EFree uses

April 17, 2018

Washington, DC—Interim Co-Presidents John Mulchaey and Yixian Zheng are thrilled to welcome experimental petrologist Michael Walter as the new Director of Carnegie's Geophysical Laboratory.  

Walter’s recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Timothy Strobel
March 27, 2018

Washington, DC—A team of scientists including Carnegie’s Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic molecules, demonstrating that the structure of the cage influences the behavior of the molecule imprisoned inside it. Their work is published by Physical Review Letters. 

A detailed understanding of the physics of individual atoms interacting with each other at the microscopic level can lead to the discovery of novel emergent phenomena, help guide the synthesis of new materials, and even aid future drug development.

But at the atomic scale, the classical, so-called Newtonian,

No content in this section.

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech, Cornell, Penn State, Lehigh, and Colorado School of Mines—and will use facilities built and managed by the Geophysical Laboratory at Argonne, Brookhaven, and Oak Ridge National Laboratories. Nine Geophysical Laboratory scientists will participate in the effort, along with Russell Hemley as director and Tim Strobel as associate director.

To achieve their goal, EFree personnel synthesize

The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois.

The integrated HPCAT facility has established four operating beamlines in nine hutches An array of novel X-ray diffraction—imaging at tiny scales--and spectroscopic techniques to reveal chemistry,  has been integrated with high pressure and extreme temperature instrumentation.

With a multidisciplinary approach and multi-institution collaborations, the high-pressure program at the HPCAT has enabeld myriad scientific

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and coordinate static, dynamic and theoretical results. The research objectives include making highly accurate measurements to understand the transitions of materials into different phases under the multimegabar pressure rang; determine the electronic and magnetic properties of solids and fluid to multimegabar pressures and elevated temperatures; to bridge the gap between static and dynamic

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical fingerprints of

Dave Mao’s research centers on ultra-high pressure physics, chemistry, material sciences, geophysics, geochemistry and planetary sciences using diamond-anvil cell techniques that he has pioneered. He is also director of the Energy Frontier Research in Extreme Environments (EFree) center at the Geophysical Laboratory and he is director of the High Pressure Synergitic Center (HPSynC) and the High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source, Argonne National Laboratory, IL.

Mao pioneered the diamond anvil cell, an instrument designed to subject materials to high pressures and temperatures by squeezing matter between two diamond tips. Over the years Mao

Guoyin Shen's research interests lie in the quest to establish and to examine models for explaining and controlling the behavior of materials under extreme conditions. His research activities include investigation of phase transformations and melting lines in molecular solids, oxides and metals; polyamorphism in liquids and amorphous materials; new states of matter and their emergent properties under extreme conditions; and the development of enabling high-pressure synchrotron techniques for advancing compression science. 

He obtained a Ph.D. in mineral physics from Uppsala University, Sweden in 1994 and a B.S. in geochemistry from Zhejiang University, China in 1982. For more

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from mantle–core differentiation,