Washington, D.C.— A team of researchers has made a major breakthrough in measuring the structure of nanomaterials under extremely high pressures. For the first time, they developed a way to get...
Explore this Story
Washington, D.C. — When materials are stressed, they eventually change shape. Initially these changes are elastic, and reverse when the stress is relieved. When the material’s strength is exceeded,...
Explore this Story
Washington, D.C.—Carnegie scientists are the first to discover the conditions under which nickel oxide can turn into an electricity-conducting metal. Nickel oxide is one of the first compounds to be...
Explore this Story
Washington, D.C. — A team of scientists led by Carnegie’s Lin Wang has observed a new form of very hard carbon clusters, which are unusual in their mix of crystalline and disordered structure. The...
Explore this Story
Washington, D.C. — How hydrogen--the most abundant element in the cosmos--responds to extremes of pressure and temperature is one of the major challenges in modern physical science. Moreover,...
Explore this Story
Washington, D.C. — Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. This phenomenon can only be found in...
Explore this Story

Pages

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and...
Explore this Project
The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech...
Explore this Project
The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois. The integrated HPCAT facility has...
Explore this Project
Dave Mao’s research centers on ultra-high pressure physics, chemistry, material sciences, geophysics, geochemistry and planetary sciences using diamond-anvil cell techniques that he has pioneered. He is also director of the Energy Frontier Research in Extreme Environments (EFree) center at the...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and...
Meet this Scientist
You May Also Like...
Washington, D.C.— Lyman Thomas Aldrich, 95, who worked as a geophysicist and geochemist at the Carnegie Institution for Science’s Department of Terrestrial Magnetism (DTM) for 34 years, including a...
Explore this Story
Washington, D.C.—Hydrogen is the most abundant element in the universe. The way it responds under extreme pressures and temperatures is crucial to our understanding of matter and the nature of...
Explore this Story
Washington, D.C.— Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution for Science, Carnegie Institution
January 3, 2017

Washington, DC—Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology.

Of particular interest are forms of germanium that can be synthesized in the lab under extreme pressure conditions. However, one of the most-promising forms of germanium for practical applications, called ST12, has only been created in tiny sample sizes—too small to definitively confirm its properties.

“Attempts to experimentally or theoretically pin down ST12-germanium’s characteristics produced extremely varied results, especially in terms of its electrical conductivity,” said

Carnegie Science, Carnegie Institution, Carnegie Institution for Science
October 27, 2016

Carnegie’s Geophysical Laboratory dedicated two and a half days this week to celebrating the legacy and vision of Marilyn Fogel, who spent 33 years there doing groundbreaking research and mentoring generations of young scientists of all levels—from high school interns to postdoctoral fellows.

Fogel’s expertise in stable isotope chemistry has led to many breakthroughs in the fields of paleo-ecology, modern ecosystem studies, climate change, and astrobiology. In her honor, Geophysical Laboratory scientists and staff organized a workshop, called Marilyn Madness, which focused on the past, present, and future of isotope research.

They brought together nearly 100 of her current

October 20, 2016

Washington, DC— Did you know that there are at least 17 crystalline forms of ice, many of them formed under extreme pressures, such as those found in the interiors of frozen planets? New work from a team led by Carnegie’s Timothy Strobel has identified the structure of a new type of ice crystal that resembles the mineral quartz and is stuffed with over five weight percent of energy-rich hydrogen molecules, which is a long-standing Department of Energy goal for hydrogen storage.  

The results, published by the Journal of the American Chemical Society, could have implications for the mineralogy of icy planetary bodies as well as for energy storage technology.

As all school

October 13, 2016

Washington, DC— New work from a team led by Carnegie’s Alexander Goncharov has created a new extremely incompressible carbon nitride compound. They say it could be the prototype for a whole new family of superhard materials, due to the unexpected ratio of carbon and nitrogen atoms. Their work is published in the journal Chemistry of Materials.

Compounds that are made up of carbon and nitrogen are of great interest to materials scientists, because they can be superhard and very resistant to heat. It’s predicted that some chemical structures of carbon and nitrogen could even be harder than diamonds! If such carbon nitrides were synthesized, they could have a number of practical

No content in this section.

The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech, Cornell, Penn State, Lehigh, and Colorado School of Mines—and will use facilities built and managed by the Geophysical Laboratory at Argonne, Brookhaven, and Oak Ridge National Laboratories. Nine Geophysical Laboratory scientists will participate in the effort, along with Russell Hemley as director and Tim Strobel as associate director.

To achieve their goal, EFree personnel synthesize

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and coordinate static, dynamic and theoretical results. The research objectives include making highly accurate measurements to understand the transitions of materials into different phases under the multimegabar pressure rang; determine the electronic and magnetic properties of solids and fluid to multimegabar pressures and elevated temperatures; to bridge the gap between static and dynamic

The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois.

The integrated HPCAT facility has established four operating beamlines in nine hutches An array of novel X-ray diffraction—imaging at tiny scales--and spectroscopic techniques to reveal chemistry,  has been integrated with high pressure and extreme temperature instrumentation.

With a multidisciplinary approach and multi-institution collaborations, the high-pressure program at the HPCAT has enabeld myriad scientific

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from mantle–core differentiation,

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical fingerprints of

Dave Mao’s research centers on ultra-high pressure physics, chemistry, material sciences, geophysics, geochemistry and planetary sciences using diamond-anvil cell techniques that he has pioneered. He is also director of the Energy Frontier Research in Extreme Environments (EFree) center at the Geophysical Laboratory and he is director of the High Pressure Synergitic Center (HPSynC) and the High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source, Argonne National Laboratory, IL.

Mao pioneered the diamond anvil cell, an instrument designed to subject materials to high pressures and temperatures by squeezing matter between two diamond tips. Over the years Mao

Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials.

For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But normal silicon is not optimal for solar energy. In its conventional crystalline form, silicon is relatively inefficient at absorbing the wavelengths most prevalent in sunlight.  Strobel made a discovery that may turn things around.  Using the high-pressure techniques pioneered at Carnegie, he created a novel form of silicon with its atoms arranged in a cage-like structure. Unlike normal silicon, this