Silicon dioxide, commonly called silica, is one of the most-abundant natural compounds and a major component of the Earth’s crust and mantle.  Silica’s various high-pressure forms make it an often-...
Explore this Story
Washington, D.C.— A Carnegie-led team was able to discover five new forms of silica under extreme pressures at room temperature. Their findings are published by Nature Communications. Silicon dioxide...
Explore this Story
Anat Shahar was awarded the Clarke Award of the Geochemical Society. It is awarded to an early-career scientist for " a single outstanding contribution to geochemistry or cosmochemistry, published...
Explore this Story
Tuesday, December 16, 2014—New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable...
Explore this Story
December 12, 2014 Hydrogen is the most-abundant element in the cosmos. With only a single electron per atom, it is deceptively simple. As a result, hydrogen has been a testing ground for theories of...
Explore this Story
Washington, D.C.—Silicon is the second most-abundant element in the earth's crust. When purified, it takes on a diamond structure, which is essential to modern electronic devices—carbon is to biology...
Explore this Story
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to...
Explore this Story
Tiny cages hold big promise. Understanding the chemical reactions that can create tiny molecular cages that hold other “guest” molecules—structures called clathrates—is key to creating a new...
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois. The integrated HPCAT facility has...
Explore this Project
CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and...
Explore this Project
Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and...
Meet this Scientist
Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature...
Meet this Scientist
Ronald Cohen primarily studies materials through first principles research—computational methods that begin with the most fundamental properties of a system, such as the nuclear charges of atoms, and then calculate what happens to a material under different conditions, such as pressure and...
Meet this Scientist
You May Also Like...
Washington, DC— Did you know that there are at least 17 crystalline forms of ice, many of them formed under extreme pressures, such as those found in the interiors of frozen planets? New work from a...
Explore this Story
Washington, D.C. — Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. This phenomenon can only be found in...
Explore this Story
Washington, D.C.--Phase transitions surround us—for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Carnegie Institution for Science* have...
Explore this Story

Explore Carnegie Science

February 6, 2017

Washington, DC— Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn’t play well with others. It is a member of a family of seven elements called the noble gases, which are called that because of their chemical aloofness—they don’t easily form compounds with other elements. Helium, widely believed to be the most inert element, has no stable compounds under normal conditions. 

Now, an international team of researchers led by Skoltech’s Artem R. Oganov (also a professor at Stony Brook University and head of Computational Materials Discovery laboratory at Moscow Institute of Physics and Technology) has predicted two stable helium compounds—

February 2, 2017

Washington, D.C.—In Earth’s interior, water (H2O) plays an important role in rock physics, but geoscientists rarely treat water in its constituent forms, that is as hydrogen plus oxygen. New work from a team led by Carnegie’s Dave Mao has identified that hydrogen can escape from the water under conditions found in Earth’s lower mantle leading to a new paradigm in lower-mantle chemistry. Their results were published in Proceedings of the National Academy of Sciences, U.S.A.          

In the atmosphere, hydrogen is a colorless, transparent gas. It bonds with oxygen to form water, which fuels the biosphere on the Earth’s surface. Deep in the rocky world beneath our feet, so-called

February 1, 2017

Yingwei Fei, a high-pressure experimentalist at the Geophysical Laboratory, and Peter Driscoll, theoretical geophysicist in the Department of Terrestrial Magnetism, have been awarded a Carnegie Science Venture Grant for their project “Direct Shock Compression of Pre-synthesized Mantle Mineral to Super-Earth Interior Conditions.”

The project is an entirely new approach to investigate the properties and dynamics of super-Earths—extrasolar planets with masses between one and 10 times that of Earth. They will use the world’s most powerful magnetic, pulsed-power radiation source, called the Z Machine at Sandia National Laboratory, to generate shock waves that can simulate the intense

January 23, 2017

Washington, D.C.--Phase transitions surround us—for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Carnegie Institution for Science* have discovered a new phenomenon of so-called metastability in a liquid phase. A metastable liquid is not quite stable. This state is common in supercooled liquids, which are liquids that cool below the freezing point without turning into a solid or a crystal. Now, scientists report the first experimental evidence of creating a metastable liquid directly by the opposite approach: melting a high-pressure solid crystal of the metal bismuth via a decompression process below its melting point

No content in this section.

The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois.

The integrated HPCAT facility has established four operating beamlines in nine hutches An array of novel X-ray diffraction—imaging at tiny scales--and spectroscopic techniques to reveal chemistry,  has been integrated with high pressure and extreme temperature instrumentation.

With a multidisciplinary approach and multi-institution collaborations, the high-pressure program at the HPCAT has enabeld myriad scientific

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and coordinate static, dynamic and theoretical results. The research objectives include making highly accurate measurements to understand the transitions of materials into different phases under the multimegabar pressure rang; determine the electronic and magnetic properties of solids and fluid to multimegabar pressures and elevated temperatures; to bridge the gap between static and dynamic

The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech, Cornell, Penn State, Lehigh, and Colorado School of Mines—and will use facilities built and managed by the Geophysical Laboratory at Argonne, Brookhaven, and Oak Ridge National Laboratories. Nine Geophysical Laboratory scientists will participate in the effort, along with Russell Hemley as director and Tim Strobel as associate director.

To achieve their goal, EFree personnel synthesize

Ronald Cohen primarily studies materials through first principles research—computational methods that begin with the most fundamental properties of a system, such as the nuclear charges of atoms, and then calculate what happens to a material under different conditions, such as pressure and temperature. He particularly focuses on properties of materials under extreme conditions such as high pressure and high temperature. This research applies to various topics and problems in geophysics and technological materials.

Some of his work focuses on understanding the behavior of high-technology materials called ferroelectrics—non-conducting crystals with an electric dipole moment similar

Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials.

For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But normal silicon is not optimal for solar energy. In its conventional crystalline form, silicon is relatively inefficient at absorbing the wavelengths most prevalent in sunlight.  Strobel made a discovery that may turn things around.  Using the high-pressure techniques pioneered at Carnegie, he created a novel form of silicon with its atoms arranged in a cage-like structure. Unlike normal silicon, this

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to shed light

Dave Mao’s research centers on ultra-high pressure physics, chemistry, material sciences, geophysics, geochemistry and planetary sciences using diamond-anvil cell techniques that he has pioneered. He is also director of the Energy Frontier Research in Extreme Environments (EFree) center at the Geophysical Laboratory and he is director of the High Pressure Synergitic Center (HPSynC) and the High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source, Argonne National Laboratory, IL.

Mao pioneered the diamond anvil cell, an instrument designed to subject materials to high pressures and temperatures by squeezing matter between two diamond tips. Over the years Mao