Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—It would be difficult to overestimate the importance of silicon when it comes to computing, solar energy, and other technological applications. (Not to mention the fact that it...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter. And yet there are still many...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC— New work from a team including Carnegie’s Guoyin Shen and Yoshio Kono used high pressure and temperature to reveal a kind of “structural memory” in samples of...
Explore this Story
Simonkolleite [Zn5(OH)8Cl2·H2O] found on a copper mining artifact, Rowley mine, Maricopa County, Arizona.  Credit RRUFF.
Washington, DC—Human industry and ingenuity has done more to diversify and distribute minerals on Earth than any development since the rise of oxygen over 2.2 billion years ago, experts say in...
Explore this Story
Washington, DC— Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn’t play well with others. It is a member of a family of seven elements called...
Explore this Story
Washington, D.C.—In Earth’s interior, water (H2O) plays an important role in rock physics, but geoscientists rarely treat water in its constituent forms, that is as hydrogen plus oxygen....
Explore this Story
Yingwei Fei, a high-pressure experimentalist at the Geophysical Laboratory, and Peter Driscoll, theoretical geophysicist in the Department of Terrestrial Magnetism, have been awarded a Carnegie...
Explore this Story
Washington, D.C.--Phase transitions surround us—for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Carnegie Institution for Science* have...
Explore this Story

Pages

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and...
Explore this Project
The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—...
Explore this Project
The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the...
Meet this Scientist
Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
You May Also Like...
Washington, D.C.—New research shows that a remarkable defect in synthetic diamond produced by chemical vapor deposition allows researchers to measure, witness, and potentially manipulate electrons in...
Explore this Story
Washington, D.C. — How hydrogen--the most abundant element in the cosmos--responds to extremes of pressure and temperature is one of the major challenges in modern physical science. Moreover,...
Explore this Story
Washington, DC— Hydrogen is the most-abundant element in the universe. It’s also the simplest—sporting only a single electron in each atom. But that simplicity is deceptive, because there is still so...
Explore this Story

Explore Carnegie Science

September 20, 2018

A new Venture Grant has been awarded to the Geophysical Laboratory’s Dionysis Foustoukos and Sue Rhee of the Department of Plant Biology, with colleague Costantino Vetriani of Rutgers University for their project Deciphering Life Functions in Extreme Environments.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions. Each grant provides $100,000 support for two years with the hope for surprising outcomes. The grants are generously supported, in part, by trustee Michael Wilson and his wife Jane and by the Ambrose Monell Foundation.

Deep sea hydrothermal vents

Unraveling the properties of fluid metallic hydrogen could help scientists unlock the mysteries of Jupiter’s formation and internal structure. Credit: Mark Meamber, LLNL.
August 15, 2018

Washington, DC—Lab-based mimicry allowed an international team of physicists including Carnegie’s Alexander Goncharov to probe hydrogen under the conditions found in the interiors of giant planets—where experts believe it gets squeezed until it becomes a liquid metal, capable of conducting electricity. Their work is published in Science.

Hydrogen is the most-abundant element in the universe and the simplest—comprised of only a one proton and one electron in each atom. But that simplicity is deceptive, because there is still so much to learn about it, including its behavior under conditions not found on Earth.

For example, although hydrogen on the

Nitrogen is the dominant gas in Earth’s atmosphere, where it is most-commonly bonded with itself in diatomic N2 molecules. New work indicate that it becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep insi
July 9, 2018

Washington, DC—New work from a team led by Carnegie’s Alexander Goncharov confirms that nitrogen, the dominant gas in Earth’s atmosphere, becomes a metallic fluid when subjected to the extreme pressure and temperature conditions found deep inside the Earth and other planets. Their findings are published by Nature Communications.

Nitrogen is one of the most-common elements in the universe and is crucial to life on Earth. In living organisms, it is a key part of the makeup of both the nucleic acids that form genetic material and the amino acids that make up proteins. It comprises nearly 80 percent of the Earth’s atmosphere.

But what about how nitrogen

May 1, 2018

Washington, D.C.--Venkata Srinu Bhadram in Timothy Strobel’s lab at the Geophysical Laboratory (GL) will receive the ninth Postdoctoral Innovation and Excellence Award (PIE). These awards are made through nominations from the departments and are chosen by the Office of the President. The recipients are awarded a cash prize for their exceptionally creative approaches to science, strong mentoring, and contributing to the sense of campus community.

According to Strobel Venkata “is one of the best young scientists in high‐pressure research and is poised to become a world leader in the field.” Venkata started his postdoc in the Energy Frontier Research Center (EFree

No content in this section.

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and coordinate static, dynamic and theoretical results. The research objectives include making highly accurate measurements to understand the transitions of materials into different phases under the multimegabar pressure rang; determine the electronic and magnetic properties of solids and fluid to multimegabar pressures and elevated temperatures; to bridge the gap between static and dynamic

The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech, Cornell, Penn State, Lehigh, and Colorado School of Mines—and will use facilities built and managed by the Geophysical Laboratory at Argonne, Brookhaven, and Oak Ridge National Laboratories. Nine Geophysical Laboratory scientists will participate in the effort, along with Russell Hemley as director and Tim Strobel as associate director.

To achieve their goal, EFree personnel

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature superconductor under pressure—a state predicted by theory, but thus far unattained—to discover new superconductors, and to learn what happens to materials in Earth’s deep interior where pressure and temperature conditions are extreme. 

Recently, a team including Struzhkin was the first to discover the conditions under which nickel oxide can turn into an electricity-

Alexander F. Goncharov's analyzes materials under extreme conditions such as high pressure and temperature using optical spectroscopy and other techniques to understand how matter fundamentally changes, the chemical processes occurring deep within planets, including Earth, and to understand and develop new materials with potential applications to energy.

In one area Goncharov is pursuing the holy grail of materials science, whether hydrogen can exist in an electrically conducting  metallic state as predicted by theory. He is also interested in understanding the different phases materials undergo as they transition under different pressure and temperature conditions to

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that can be gleaned from mineral impurities preserved inside diamonds.

Walter

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical