Carnegie Science, Carnegie Institution, Carnegie Institution for Science, University of Bristol
Washington, DC— Experimental petrologist Michael Walter, currently head of the School of Earth Sciences at the University of Bristol, has been selected as the eighth director of Carnegie’...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Tim Strobel
Washington, DC— A team including several Carnegie scientists has developed a form of ultrastrong, lightweight carbon that is also elastic and electrically conductive. A material with such a...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—Recovered minerals that originated in the deep mantle can give scientists a rare glimpse into the dynamic processes occurring deep inside of the Earth and into the history of the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—It would be difficult to overestimate the importance of silicon when it comes to computing, solar energy, and other technological applications. (Not to mention the fact that it...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter. And yet there are still many...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC— New work from a team including Carnegie’s Guoyin Shen and Yoshio Kono used high pressure and temperature to reveal a kind of “structural memory” in samples of...
Explore this Story
Simonkolleite [Zn5(OH)8Cl2·H2O] found on a copper mining artifact, Rowley mine, Maricopa County, Arizona.  Credit RRUFF.
Washington, DC—Human industry and ingenuity has done more to diversify and distribute minerals on Earth than any development since the rise of oxygen over 2.2 billion years ago, experts say in...
Explore this Story
Washington, DC— Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn’t play well with others. It is a member of a family of seven elements called...
Explore this Story

Pages

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.
Explore this Project
Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Ronald Cohen primarily studies materials through first principles research—computational methods that begin with the most fundamental properties of a system, such as the nuclear charges of atoms, and then calculate what happens to a material under different conditions, such as pressure and...
Meet this Scientist
You May Also Like...
Washington, D.C.— Carbonates are a group of minerals that contain the carbonate ion (CO32-) and a metal, such as iron or magnesium. Carbonates are important constituents of marine sediments and are...
Explore this Story
When considering the synthesis of new structures, some of the possible spatial configurations of atoms are energetically favorable—meaning they are easy to maintain—and others are more...
Explore this Story
Carbon is an element of seemingly infinite possibilities. This is because the configuration of its electrons allows for numerous self-bonding combinations that give rise to a range of materials with...
Explore this Story

Explore Carnegie Science

Artist's conception of lead selenide under pressure courtesy of Xiao-Jia Chen.
October 7, 2019

Washington, DC— Pressure improves the ability of materials to turn heat into electricity and could potentially be used to create clean generators, according to new work from a team that includes Carnegie’s Alexander Goncharov and Viktor Struzhkin published in Nature Materials.

Alternative energy sources are key to combating climate change caused by carbon emissions. Compounds with thermoelectric capabilities can convert thermal energy’s innate, physical need to spread from a hot place into a cold place into energy—harvesting electricity from the temperature differential. In theory, generators built from these materials could be used to recover electricity

Journal of Physical Chemistry Letters cover
September 9, 2019

Washington, DC— New materials can contribute potential solutions to many societal issues—from increasing access to clean drinking water to improving solar panel efficiency. But figuring out how to synthesize them can be a difficult process of trial and error.

Carnegie’s Li Zhu, Timothy Strobel, and Ronald Cohen have created a new tool for predicting pathways to novel materials that could speed this process up significantly. A paper demonstrating the method’s effectiveness is a cover story in The Journal of Physical Chemistry Letters.

Called PALLAS after one of the nicknames for Athena, the Greek goddess of wisdom, their method creates a kind of

March 13, 2019

Carolyn Beaumont, a senior at the Potomac School in McLean VA, won 5th place in the 78th Regeneron Science Talent Search. During the summer of 2018, she worked with Geophysical Laboratory staff members George Cody and Bjorn Mysen on a project to shed light on the molecular details of how water interacts with silicate melts. During her time, she learned how to run all aspects of the experiment, including how to operate a piston cylinder pressure apparatus that generates pressures on the order of 1.5 GPa and temperatures in excess of 1400°C. She also used molecular spectroscopy and nuclear magnetic resonance spectroscopy, to obtain detailed

September 20, 2018

A new Venture Grant has been awarded to the Geophysical Laboratory’s Dionysis Foustoukos and Sue Rhee of the Department of Plant Biology, with colleague Costantino Vetriani of Rutgers University for their project Deciphering Life Functions in Extreme Environments.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions. Each grant provides $100,000 support for two years with the hope for surprising outcomes. The grants are generously supported, in part, by trustee Michael Wilson and his wife Jane and by the Ambrose Monell Foundation.

Deep sea hydrothermal vents

No content in this section.

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical

Experimental petrologist Michael Walter became director of the Geophysical Laboratory beginning April 1, 2018. His recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that can be gleaned from mineral impurities preserved inside diamonds.

Walter

Sally June Tracy applies cutting-edge experimental and analytical techniques to understand the fundamental physical behavior of materials at extreme conditions. She uses dynamic compression techniques with high-flux X-ray sources to probe the structural changes and phase transitions in materials at conditions that mimic impacts and the interiors of terrestrial and exoplanets. She is also an expert in nuclear resonant scattering and synchrotron X-ray diffraction. She uses these techniques to understand novel behavior at the electronic level.  Tracy received her Ph.D. from the California Institute of

Timothy Strobel subjects materials to high-pressures to understand chemical processes  and interactions, and to create new, advanced energy-related materials.

For instance, silicon is the second most abundant element in the Earth’s crust and a mainstay of the electronics industry. But normal silicon is not optimal for solar energy. In its conventional crystalline form, silicon is relatively inefficient at absorbing the wavelengths most prevalent in sunlight.  Strobel made a discovery that may turn things around.  Using the high-pressure techniques pioneered at Carnegie, he created a novel form of silicon with its atoms arranged in a cage-like structure. Unlike