Washington, DC—Offering a rare insider analysis of the climate assessment process, Carnegie’s Katharine Mach and colleagues at the Department of Global Ecology examined the writing and...
Explore this Story
Washington, DC— It is imperative that society learn more about how climate change contributes to episodic and very severe water quality impairments, such as the harmful algal bloom that caused...
Explore this Story
Washington, DC— It turns out that forests in the Andean and western Amazonian regions of South America break long-understood rules about how ecosystems are put together, according to new...
Explore this Story
Washington, DC— Climate change assessments must be more relevant to policymakers’ needs, say Carnegie’s Katharine Mach and Stéphane Hallegatte of the World Bank’s...
Explore this Story
The results from a suite of environmental mercury studies done by the Carnegie Amazon Mercury Project (CAMEP) was used by the Peruvian government for the decision to announce this state of emergency...
Explore this Story
The results from a suite of environmental mercury studies done by the Carnegie Amazon Mercury Project (CAMEP) was used by the Peruvian government for the decision to announce this state of emergency...
Explore this Story
Rebecca Albright, a postdoc in the Caldeira lab at Global Ecology since 2014, is the latest recipient of the newly formed Carnegie Postdoctoral Innovation and Excellence (PIE) Awards. She has been...
Explore this Story
Antarctica
New work from an international team including Carnegie’s Ken Caldeira demonstrates that the planet’s remaining fossil fuel resources would be sufficient to melt nearly all of Antarctica...
Explore this Story

Pages

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (...
Explore this Project
Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass...
Explore this Project
Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales....
Meet this Scientist
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
You May Also Like...
Washington, DC— Carnegie’s Greg Asner advanced through a venture capital-style pitch group challenge to win a $250,000 grant from Battery Powered that will enable his flying laboratory team to map...
Explore this Story
Washington, DC—For the first time, researchers have been able to map the true extent of gold mining in the biologically diverse region of Madre De Dios in the Peruvian Amazon. The team combined field...
Explore this Story

Explore Carnegie Science

Anemone. California, Monterey Bay National Marine Sanctuary. Photographer: Dr. Dwayne Meadows, NOAA/NMFS/OPR.
March 28, 2019

Washington, DC—Tiny fragments of plastic in the ocean are consumed by sea anemones along with their food, and bleached anemones retain these microfibers longer than healthy ones, according to new research from Carnegie’s Manoela Romanó de Orte, Sophie Clowez, and Ken Caldeira.

Their work, published by Environmental Pollution, is the first-ever investigation of the interactions between plastic microfibers and sea anemones. Anemones are closely related to corals and can help scientists understand how coral reef ecosystems are affected by the millions of tons of plastic contaminating the world’s oceans.

One of the most-common types of plastics in the

Aerial view of red tide along Florida’s gulf coast - summer/fall 2018 by Ryan McGill, purchased form Shutterstock
February 26, 2019

Washington, DC—Strategies for limiting climate change must take into account their potential impact on water quality through nutrient overload, according to a new study from Carnegie’s Eva Sinha and Anna Michalak published by Nature Communications. Some efforts at reducing carbon emissions could actually increase the risk of water quality impairments, they found.

Rainfall and other precipitation wash nutrients from human activities like agriculture into waterways. When waterways get overloaded with nutrients, a dangerous phenomenon called eutrophication can occur, which can sometime lead to toxin-producing algal blooms or low-oxygen dead zones called hypoxia.

Subalpine forests of the Colorado Rockies are expected to be strongly affected by climate change. Photo courtesy of Lee Anderegg.
February 25, 2019

Washington, DC— On the mountain slopes of the western United States, climate can play a major role in determining which tree communities will thrive in the harshest conditions, according to new work from Carnegie’s Leander Anderegg and University of Washington’s Janneke Hille Ris Lambers.

Their findings, published in Ecology Letters, are an important step in understanding how forest growth will respond to a climate altered by human activity.

As researchers try to anticipate how climate change will affect forest ecosystems, it is crucial to understand the factors that influence how forest habitats change over time—including both environmental

Coal mine, public domain
January 29, 2019

Washington, DC—Chinese regulations on coal mining have not curbed the nation’s growing methane emissions as intended, says new research from a team led by Carnegie’s Scot Miller and Anna Michalak. Their findings are published in Nature Communications.

China is the world’s largest producer and consumer of coal, which is used to generate more than 70 percent of its electricity. It also emits more methane than any other nation, and the coal sector accounts for about 33 percent of this total. This happens when underground pools of methane gas are released during the mining process.

In the atmosphere, methane acts as a greenhouse gas, trapping heat

No content in this section.

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide