“I started out thinking that it was all about information, and if we only got the right information to the right people, then the right things would happen,” Carnegie's Ken Caldeira tells WIRED...
Explore this Story
A pair of researchers have new evidence to support a link between cyclical comet showers and mass extinctions, including the one that they believe wiped out the dinosaurs 66 million years ago. NYU's ...
Explore this Story
Solar power developers in California have been using mostly undeveloped desert lands with sensitive wildlife habitat as sites for new solar power installations. Areas that have already been developed...
Explore this Story
"Some of the scariest prospects from a changing clime involve conditions completely outside the range of human experience," Department of Global Ecology Director Chris Field tells the Associated...
Explore this Story
Impacts of Large Herbivores on Vegetation: publications from the journals Ecography and Publications of the National Academy of Sciences
Explore this Story
Washington, DC— Protected areas, such as nature reserves and national parks, play a crucial role in sheltering wildlife, such as African elephants, from hunting and habitat destruction. But it’s...
Explore this Story
The L.A. Times covers the Carnegie Airborne Observatory's assessment of California's drought: "Asner has a practiced eye for forest health, and with instruments aboard his plane that give him X-ray...
Explore this Story
Washington, D.C.—With mounting vigor for combating global climate change, increasing the use of renewable energy resources such as solar, without compromising natural habitats, is a challenge to the...
Explore this Story


Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development. Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the...
Explore this Project
Carnegie researchers are developing new scientific approaches that integrate phylogenetic, chemical and spectral remote sensing perspectives - called Spectranomics - to map canopy function and biological diversity throughout tropical forests of the world. Mapping the composition and chemistry of...
Explore this Project
In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (...
Explore this Project
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales....
Meet this Scientist
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
You May Also Like...
Solving the climate change problem means transitioning to an energy system that emits little or no greenhouse gases into the atmosphere. According to new work from a team of experts including...
Explore this Story
Washington, DC— A team of scientists led by Carnegie’s Rebecca Albright and Ken Caldeira performed the first-ever experiment that manipulated seawater chemistry in a natural coral reef community in...
Explore this Story
Washington, DC—California’s forests are home to the planet’s oldest, tallest and most-massive trees. New research from Carnegie’s Greg Asner and his team reveals that up to 58 million large trees in...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Scubazoo
March 19, 2018

Sabah, Malaysia—Degraded forests play a crucial role in the future survival of Bornean elephants. A new study, published in the journal Biological Conservation, finds that forests of surprisingly short stature are ideal for elephants.

“Our study indicates that forests with a mean canopy height of 13 meters (about 43 feet) were those most utilized by Bornean elephants. These forests are consistent with degraded landscapes or those recovering from previous logging, or clearance,” noted lead author Luke Evans, a postdoctoral researcher at Carnegie and Danau Girang Field Centre. “The study utilized GPS tracking data from 29 individual elephants that were collared across Sabah,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Aaron Takeo Ninokawa of UC Davis
March 14, 2018

Washington, DC— Ocean acidification will severely impair coral reef growth before the end of the century if carbon dioxide emissions continue unchecked, according to new research on Australia’s Great Barrier Reef led by Carnegie’s Ken Caldeira and the California Academy of Sciences’ Rebecca Albright.

Their work, published in Nature, represents the first ocean acidification experiment in which seawater was made artificially acidic by the addition of carbon dioxide and then allowed to flow across a natural coral reef community. The acidity of the seawater was increased to reflect end-of-century projections if carbon dioxide from greenhouse gas emissions are not abated.

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, public domain
February 26, 2018

Washington, DC—Wind and solar power could generate most but not all electricity in the United States, according to an analysis of 36 years of weather data by Carnegie’s Ken Caldeira, and three Carnegie-affiliated energy experts: Matthew Shaner, Steven Davis (of University of California Irvine), and Nathan Lewis (of Caltech). Their work is published by Energy & Environmental Science. 

Right now, about 38 percent of carbon dioxide emissions come from electricity production, which must be reduced to combat climate change.

The team found that as the amount of electricity produced by solar and wind increases, avoiding major blackouts becomes increasingly challenging.   

December 6, 2017

Washington, DC— The climate models that project greater amounts of warming this century are the ones that best align with observations of the current climate, according to a new paper from Carnegie’s Patrick Brown and Ken Caldeira published by Nature.  Their findings suggest that the models used by the Intergovernmental Panel on Climate Change, on average, may be underestimating future warming.

Climate model simulations are used to predict how much warming should be expected for any given increase in the atmospheric concentration of carbon dioxide and other greenhouse gases.

“There are dozens of prominent global climate models and they all project different amounts of

No content in this section.

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.


Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Carnegie Science, Carnegie Institution for Science, Carnegie Institution

Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional to global scales.

Asner graduated with a bachelor’s degree in engineering from the University of Colorado, Boulder, in 1991. He earned master's and doctorate degrees in geography and biology, respectively, from the University of Colorado in 1997. He served as a postdoctoral fellow in the Department of Geological and Environmental Sciences at Stanford University until he joined the

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America's Climate

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves” passed its 1,

For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive team of researchers who investigate the basics of climate change. Field has authored more than 200 scientific publications and is cochair of the U. N.'s Intergovernmental Panel on Climate Change (IPCC) Working Group 2. The IPCC Fourth Assessment, for which Field was a coordinating author, was published in 2007. He was coeditor of the March 2012 IPCC Special Report on Managing the Risks of Extreme