Stanford, CA—Using software tools developed by Near Zero, a research group hosted by the Carnegie Institution for Science’s Department of Global...
Explore this Story
Stanford, CA—One of the world’s longest-running, most comprehensive climate change experiments produced some surprising results. The extensive experiment subjected grassland ecosystems to...
Explore this Story
Carnegie Science, Carnegie Institution for Science, Carnegie Institution, Carnegie
Washington, DC— Well-understood physical and chemical processes can easily explain the alleged evidence of a secret, large-scale atmospheric spraying program, commonly referred to as “...
Explore this Story
Washington, DC—Offering a rare insider analysis of the climate assessment process, Carnegie’s Katharine Mach and colleagues at the Department of Global Ecology examined the writing and...
Explore this Story
Washington, DC— It is imperative that society learn more about how climate change contributes to episodic and very severe water quality impairments, such as the harmful algal bloom that caused...
Explore this Story
Washington, DC— It turns out that forests in the Andean and western Amazonian regions of South America break long-understood rules about how ecosystems are put together, according to new...
Explore this Story
Washington, DC— Climate change assessments must be more relevant to policymakers’ needs, say Carnegie’s Katharine Mach and Stéphane Hallegatte of the World Bank’s...
Explore this Story
The results from a suite of environmental mercury studies done by the Carnegie Amazon Mercury Project (CAMEP) was used by the Peruvian government for the decision to announce this state of emergency...
Explore this Story

Pages

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development. Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the...
Explore this Project
The Carnegie Airborne Observatory (CAO), developed by GregAsner, is a fixed-wing aircraft that sweeps laser light across the vegetation canopy to image it in brilliant 3-D. The data can determine the location and size of each tree at a resolution of 3.5 feet (1.1 meter), a level of detail that is...
Explore this Project
Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at...
Meet this Scientist
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
You May Also Like...
Washington, DC—The heat generated by burning a fossil fuel is surpassed within a few months by the warming caused by the release of its carbon dioxide into the atmosphere, according to new work from...
Explore this Story
Washington, DC—Offering a rare insider analysis of the climate assessment process, Carnegie’s Katharine Mach and colleagues at the Department of Global Ecology examined the writing and editing...
Explore this Story
Washington, D.C.— In the face of global climate change, increasing the use of renewable energy resources is one of the most urgent challenges facing the world. Further development of one resource,...
Explore this Story

Explore Carnegie Science

October 29, 2018

Washington, DC—Today, Paul G. Allen Philanthropies and a consortium of partners, including Carnegie, unveiled the Allen Coral Atlas, a pioneering effort that uses high-resolution satellite imagery and advanced analytics to map and monitor the world’s coral reefs in unprecedented detail. At launch, the Allen Coral Atlas offers the highest-resolution, up-to-date global image of the world’s coral reefs ever captured, and the first detailed maps showing the composition and structure of five important reefs located throughout the world.

“Paul challenged us with a bold and audacious goal—save coral reefs around the world,” said Bill Hilf, CEO of

Smokestacks photo from the public domain
August 16, 2018

Washington, DC— When it comes to aerosol pollution, as the old real estate adage says, location is everything.

Aerosols are tiny particles that are spewed into the atmosphere by human activities, including burning coal and wood. They have negative effects on air quality—damaging human health and agricultural productivity.

While greenhouse gases cause warming by trapping heat in the atmosphere, some aerosols can have a cooling effect on the climate—similar to how emissions from a major volcanic eruption can cause global temperatures to drop.  This occurs because the aerosol particles cause more of the Sun’s light to be reflected away from the

August 7, 2018

New research, led by former Carnegie postdoctoral fellow Summer Praetorius, shows that changes in the heat flow of the northern Pacific Ocean may have a larger effect on the Arctic climate than previously thought. The findings are published in the August 7, 2018, issue of Nature Communications.

The Arctic is experiencing larger and more rapid increases in temperature from global warming more than any other region, with sea-ice declining faster than predicted. This effect, known as Arctic amplification, is a well-established response that involves many positive feedback mechanisms in polar regions.

What has not been well understood is how sea-surface temperature patterns and

Robin Martin and Katie Kryston search the Spectranomics Library for a species. Photo by Greg Asner.
August 2, 2018

Washington, DC—Last week, the Natural Sciences and Engineering Research Council of Canada announced a multimillion dollar grant to support the launch of the Canadian Airborne Biodiversity Observatory, which will specialize spectranomics research, a revolutionary technique devised in 2009 by Carnegie’s Greg Asner and Robin Martin.

This combined fieldwork-and-laboratory effort deploys a flying laboratory to determine the relationship between the function and biological diversity of forest canopy plants, which is now being applied to coral reef communities, too.

“CABO’s adoption of our approach represents a milestone for our Carnegie Airborne

No content in this section.

Carnegie researchers are developing new scientific approaches that integrate phylogenetic, chemical and spectral remote sensing perspectives - called Spectranomics - to map canopy function and biological diversity throughout tropical forests of the world.

Mapping the composition and chemistry of species in tropical forests is critical to understanding forest functions related to human use and climate change. However, high-resolution mapping of tropical forest canopies is challenging because traditional field, airborne and satellite measurements cannot easily measure the canopy chemical or taxonomic variation among species over large regions. New technology, such as the Carnegie

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America

Carnegie Science, Carnegie Institution for Science, Carnegie Institution

Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional to global scales.

Asner graduated with a bachelor’s degree in engineering from the University of Colorado, Boulder, in 1991. He earned master's and doctorate degrees in geography and biology, respectively, from the University of Colorado in 1997. He served as a postdoctoral fellow in the Department of Geological and Environmental Sciences at Stanford University until