Lake Erie just can’t catch a break. The lake has experienced harmful algal blooms and severe oxygen-depleted “dead zones” for years, but now a team of researchers led by Carnegie...
Explore this Story
Audio Washington, D.C.—Lake Erie just can’t catch a break. The lake has experienced harmful algal blooms and severe oxygen-...
Explore this Story
Read the Newsweek article that describes how Greg Asner created the first high-resolution carbon...
Explore this Story
December 8, 2014 Natural gas power plants produce substantial amounts of gases that lead to global warming. Replacing old coal-fired power plants with new natural gas plants could cause climate...
Explore this Story
December 8, 2014 Natural gas power plants produce substantial amounts of gases that lead to global warming. Replacing old coal-fired power plants with new natural gas plants could cause climate...
Explore this Story
Washington, D.C.— Natural gas power plants produce substantial amounts of gases that lead to global warming. Replacing old coal-fired power plants with new natural gas plants could cause...
Explore this Story
December 3, 2014 The climate warming caused by a single carbon emission takes only about 10 years to reach its maximum effect. This is important because it refutes the common misconception that today...
Explore this Story

Pages

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the...
Explore this Project
Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass...
Explore this Project
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist
Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales....
Meet this Scientist
You May Also Like...
Washington, D.C.—With the growing frequency and magnitude of toxic freshwater algal blooms becoming an increasingly worrisome public health concern, Carnegie scientists Jeff Ho and Anna Michalak,...
Explore this Story
AudioWashington, D.C.— Forest conservation is an issue of major concern to communities large and small around the globe. But gathering the monitoring data needed to make the right decisions has...
Explore this Story
Washington, D.C.--Christopher Field, the founding director of Carnegie’s Department of Global Ecology has been awarded one of Germany’s most prestigious prizes, the Max Planck Research Prize with...
Explore this Story

Explore Carnegie Science

USGS photo of Mount Pinatubo erupting
August 5, 2019

Washington, DC— Major volcanic eruptions spew ash particles into the atmosphere, which reflect some of the Sun’s radiation back into space and cool the planet. But could this effect be intentionally recreated to fight climate change? A new paper in Geophysical Research Letters investigates.

Solar geoengineering is a theoretical approach to curbing the effects of climate change by seeding the atmosphere with a regularly replenished layer of intentionally released aerosol particles. Proponents sometimes describe it as being like a “human-made” volcano.

“Nobody likes the idea of intentionally tinkering with our climate system at global scale,

Public domain image of power plant with smokestacks
July 1, 2019

Washington, DC—If power plants, boilers, furnaces, vehicles, and other energy infrastructure is not marked for early retirement, the world will fail to meet the 1.5-degree Celsius climate-stabilizing goal set out by the Paris Agreement, but could still reach the 2-degree Celsius goal, says the latest from the ongoing collaboration between the University of California Irvine’s Steven Davis and Carnegie’s Ken Caldeira.

To achieve the objective of limiting warming to no greater than 2 degrees Celsius—or, more optimistically, to less than 1.5 degrees Celsius—it will be necessary to reach net-zero emissions by mid-century.

In this new paper,

An image of the algal blooms in Lake Erie taken in July 2015. NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey.
April 24, 2019

Washington, DC—Changes in temperature and precipitation have already impacted the amount of nitrogen introduced into U.S. waterways, according to new research from a team of three Carnegie ecologists published this week in Environmental Science & Technology.

Nitrogen from agriculture and other human activities washes into waterways, which, in excess, creates a dangerous phenomenon called eutrophication. This can lead to toxin-producing algal blooms or low-oxygen dead zones called hypoxia. Over the past several summers, dead zones and algal blooms in lake and coastal regions across the United States have received extensive news coverage.

Carnegie’s Anna

Anemone. California, Monterey Bay National Marine Sanctuary. Photographer: Dr. Dwayne Meadows, NOAA/NMFS/OPR.
March 28, 2019

Washington, DC—Tiny fragments of plastic in the ocean are consumed by sea anemones along with their food, and bleached anemones retain these microfibers longer than healthy ones, according to new research from Carnegie’s Manoela Romanó de Orte, Sophie Clowez, and Ken Caldeira.

Their work, published by Environmental Pollution, is the first-ever investigation of the interactions between plastic microfibers and sea anemones. Anemones are closely related to corals and can help scientists understand how coral reef ecosystems are affected by the millions of tons of plastic contaminating the world’s oceans.

One of the most-common types of plastics in the

No content in this section.

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral called aragonite, a naturally occurring form of calcium carbonate, CaCO3, to make their skeletons.  When carbon dioxide, CO2, from the atmosphere is absorbed by the ocean, it forms carbonic acid—the same stuff that makes soda fizz--making the ocean more acidic and thus more difficult for many marine organisms to grow their shells and skeletons and threatening coral reefs globally.

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the