December 3, 2014 The climate warming caused by a single carbon emission takes only about 10 years to reach its maximum effect. This is important because it refutes the common misconception that today...
Explore this Story
Washington, D.C.—The climate warming caused by a single carbon emission takes only about 10 years to reach its maximum effect. This is important because it refutes the common misconception that...
Explore this Story
New work from a team led by Carnegie’s Greg Asner shows the limitations of long-used research methods in tropical rainforest ecology and points to new technological approaches for understanding...
Explore this Story
Washington, D.C.— New work from a team led by Carnegie’s Greg Asner shows the limitations of long-used research methods in tropical rainforest ecology and points to new technological...
Explore this Story
Washington, D.C.— A new high-resolution mapping strategy has revealed billions of tons of carbon in Peruvian forests that can be preserved as part of an effort to sequester carbon stocks in the...
Explore this Story
A team of researchers working on a Carnegie expedition in Australia’s Great Barrier Reef has documented that coral growth rates have plummeted 40 percent since the mid-1970s. The scientists...
Explore this Story
AudioWashington, DC— A team of researchers working on a Carnegie expedition in Australia’s Great Barrier Reef has documented that coral growth...
Explore this Story
Washington, D.C.— Forest conservation is an issue of major concern to communities large and small around the globe. But gathering the monitoring data needed to make the right decisions has...
Explore this Story

Pages

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass...
Explore this Project
Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake...
Explore this Project
In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (...
Explore this Project
Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to...
Meet this Scientist
Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at...
Meet this Scientist
Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales....
Meet this Scientist
You May Also Like...
Seagrass meadows could play a limited, localized role in alleviating ocean acidification in coastal ecosystems—in addition to providing an important source of food and shelter for marine...
Explore this Story
Read the Newsweek article that describes how Greg Asner created the first high-resolution carbon maps of the entire country of Peru
Explore this Story
 “It’s like going in and getting a blood test, and the doctor saying you’re OK or you’re not,” Greg Asner tells The Guardian of his Carnegie Airborne Observatory...
Explore this Story

Explore Carnegie Science

SOCCR2 cover art
November 27, 2018

Washington, DC—Carnegie’s Anna Michalak was a major contributor to the U.S. Global Change Research Program’s Second State of the Carbon Cycle Report released last Friday, which provides a current state-of-the-science assessment of the carbon cycle in North America—including the United States, Canada, and Mexico—and  its connection to climate and society.

Over the past decade, fossil fuel emissions continued to be by far the largest North American carbon source. Urban areas in North America are the primary source of anthropogenic carbon emissions.

But land ecosystems and the ocean play a major role in removing and sequestering carbon

October 29, 2018

Washington, DC—Today, Paul G. Allen Philanthropies and a consortium of partners, including Carnegie, unveiled the Allen Coral Atlas, a pioneering effort that uses high-resolution satellite imagery and advanced analytics to map and monitor the world’s coral reefs in unprecedented detail. At launch, the Allen Coral Atlas offers the highest-resolution, up-to-date global image of the world’s coral reefs ever captured, and the first detailed maps showing the composition and structure of five important reefs located throughout the world.

“Paul challenged us with a bold and audacious goal—save coral reefs around the world,” said Bill Hilf, CEO of

Smokestacks photo from the public domain
August 16, 2018

Washington, DC— When it comes to aerosol pollution, as the old real estate adage says, location is everything.

Aerosols are tiny particles that are spewed into the atmosphere by human activities, including burning coal and wood. They have negative effects on air quality—damaging human health and agricultural productivity.

While greenhouse gases cause warming by trapping heat in the atmosphere, some aerosols can have a cooling effect on the climate—similar to how emissions from a major volcanic eruption can cause global temperatures to drop.  This occurs because the aerosol particles cause more of the Sun’s light to be reflected away from the

August 7, 2018

New research, led by former Carnegie postdoctoral fellow Summer Praetorius, shows that changes in the heat flow of the northern Pacific Ocean may have a larger effect on the Arctic climate than previously thought. The findings are published in the August 7, 2018, issue of Nature Communications.

The Arctic is experiencing larger and more rapid increases in temperature from global warming more than any other region, with sea-ice declining faster than predicted. This effect, known as Arctic amplification, is a well-established response that involves many positive feedback mechanisms in polar regions.

What has not been well understood is how sea-surface temperature patterns and

No content in this section.

Carnegie researchers are developing new scientific approaches that integrate phylogenetic, chemical and spectral remote sensing perspectives - called Spectranomics - to map canopy function and biological diversity throughout tropical forests of the world.

Mapping the composition and chemistry of species in tropical forests is critical to understanding forest functions related to human use and climate change. However, high-resolution mapping of tropical forest canopies is challenging because traditional field, airborne and satellite measurements cannot easily measure the canopy chemical or taxonomic variation among species over large regions. New technology, such as the Carnegie

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

Carnegie Science, Carnegie Institution for Science, Carnegie Institution

Greg Asner is a staff scientist in Carnegie's Department of Global Ecology and also serves as a Professor in the Department of Earth System Science at Stanford University. He is an ecologist recognized for his exploratory and applied research on ecosystems, land use, and climate change at regional to global scales.

Asner graduated with a bachelor’s degree in engineering from the University of Colorado, Boulder, in 1991. He earned master's and doctorate degrees in geography and biology, respectively, from the University of Colorado in 1997. He served as a postdoctoral fellow in the Department of Geological and Environmental Sciences at Stanford University until

Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-term evolution of climate and geochemical cycles; climate intervention proposals; and energy technology.

 Caldeira was a lead author for the U.N.’s Intergovernmental Panel on Climate Change (IPCC) AR5 report and was coordinating lead author of the oceans chapter for the 2005 IPCC report on carbon capture and storage. He was a co-author of the 2010 US National Academy America

Anna Michalak joined Carnegie in 2011 from the Department of Civil and Environmental Engineering at the University of Michigan. Her research focuses on characterizing complexity and quantifying uncertainty in environmental systems to improve our understanding of these systems and our ability to forecast their variability. She is looking at a variety of interactions including atmospheric greenhouse gas emission and sequestration estimation, water quality monitoring and contaminant source identification, and use of remote sensing data for Earth system characterization.

The common theme of her research is to develop and apply spatiotemporal statistical data methods for optimizing the

Joe Berry has been a Carnegie investigator since 1972. He has developed powerful tools to measure local and regional exchanges of carbon over spaces of up to thousands of square miles. He uses information at the plant scale to extrapolate the carbon balance at regional and continental scales.

According to ISI's Web of Science, two of Joe Berry's papers passed extremely high, rarefied citation milestones. The 1980  paper “A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species,” has had over 1,500th citations. His 1982 paper “On the relationship between carbon isotope discrimination and the intercellular carbon dioxide