AudioBaltimore, MD—Proper tissue function and regeneration is supported by stem cells, which reside in so-called niches. New work from...
Explore this Story
Baltimore, MD—Mammalian females ovulate periodically over their reproductive lifetimes, placing significant demands on their ovaries for egg production. Whether mammals generate new eggs in adulthood...
Explore this Story
Baltimore, MD— Eggs take a long time to produce in the ovary, and thus are one of a body’s precious resources. It has been theorized that the body has mechanisms to help the ovary ensure that...
Explore this Story
Baltimore, MD— The ability of embryonic stem cells to differentiate into different types of cells with different functions is regulated and maintained by a complex series of chemical interactions,...
Explore this Story
Washington, D.C.—The Carnegie Institution for Science and the University of Massachusetts Medical School (UMMS) have been granted United States Patent 8,283,329, entitled, “Genetic inhibition of...
Explore this Story
Baltimore, MD —You may think you have dinner all to yourself, but you’re actually sharing it with a vast community of microbes waiting within your digestive tract. A new study from a team including...
Explore this Story
Baltimore, MD—Director Emeritus Donald Brown, of Carnegie’s Department of Embryology, receives the prestigious 2012 Lasker-Koshland Special Achievement Award in Medical Science “For exceptional...
Explore this Story
Baltimore, MD — The study of muscular system protein myostatin has been of great interest to researchers as a potential therapeutic target for people with muscular disorders. Although much is known...
Explore this Story

Pages

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into...
Explore this Project
The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and...
Explore this Project
The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing...
Meet this Scientist
Junior investigator Zhao Zhang joined Carnegie in November 2014. He studies how elements with the ability to “jump” around the genome, called transposons, are controlled in egg, sperm, and other somatic tissues in order to understand how transposons contribute to genomic...
Meet this Scientist
Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question...
Meet this Scientist
You May Also Like...
Allan C. Spradling, Director Emeritus of Carnegie’s Department of Embryology, has been awarded the 23rd March of Dimes and Richard B. Johnson, Jr., MD Prize in Developmental Biology as...
Explore this Story
Baltimore, MD—The newest member of the staff at the Carnegie Department of Embryology, Junior Investigator Zhao Zhang, received the prestigious Larry Sandler Memorial Award at the 56th Annual...
Explore this Story
Every high school biology class learns about the process of mitosis, the series of steps through which a cell divides itself into two daughter cells, each with the same genetic material. Mitosis...
Explore this Story

Explore Carnegie Science

This image captures the bright blue light (chemiluminesc ence) emitted by the NanoLuc protein in LipoGlo zebrafish. It is is provided courtesy of James Thierer.
July 31, 2019

Baltimore, MD—A newly developed technique that shows artery clogging fat-and-protein complexes in live fish gave investigators from Carnegie, Johns Hopkins University, and the Mayo Clinic a glimpse of how to study heart disease in action. Their research, which is currently being used to find new drugs to fight cardiovascular disease, is now published in Nature Communications.

Fat molecules, also called lipids, such as cholesterol and triglycerides are shuttled around the circulatory system by a protein called Apolipoprotein-B, or ApoB for short. These complexes of lipid and protein are called lipoproteins but may be more commonly known as “bad cholesterol.”

One analogy for understanding the mathematical structure of the team's work is to think of it as foam being simplified into a single bubble by progressively merging adjacent bubbles.
July 2, 2019

Baltimore, MD—How do the communities of microbes living in our gastrointestinal systems affect our health? Carnegie’s Will Ludington was part of a team that helped answer this question.

For nearly a century, evolutionary biologists have probed how genes encode an individual’s chances for success—or fitness—in a specific environment.

In order to reveal a potential evolutionary trajectory biologists measure the interactions between genes to see which combinations are most fit.  An organism that is evolving should take the most fit path. This concept is called a fitness landscape, and various mathematical techniques have been developed to

June 17, 2019

Meredith Wilson, a postdoctoral associate in Steve Farber’s lab at the Department of Embryology, has been awarded Carnegie’s thirteenth Postdoctoral Innovation and Excellence Award. These prizes are given to postdocs for their exceptionally creative approaches to science, strong mentoring, and contributing to the sense of campus community. The nominations are made by the departments and are chosen by the Office of the President. The recipients receive a cash prize and are celebrated at an event at their departments.  

Wilson came to Carnegie in 2014 from the University of Pennsylvania with a background in cell biology investigating how motor proteins position

Illustration of a thymus in a human chest courtesy of Navid Marvi.
May 29, 2019

Washington, DC—Aging-related inflammation can drive the decline of a critical structural protein called lamin-B1, which contributes to diminished immune function in the thymus, according to research from Carnegie’s Sibiao Yue, Xiaobin Zheng, and Yixian Zheng published in Aging Cell.

Each of our cells is undergirded by a protein-based cellular skeleton. And each of our tissues is likewise supported by a protein matrix holding the cells that comprise it together. These protein scaffolds or structures are necessary for organs and tissues to be constructed during development.

“Since organ building and maintenance require this protein-based structural support

No content in this section.

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

Steven Farber

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the musculoskeletal system to develop in the mammalian embryo. Skin, muscle, cartilage, and bone are all derived from a group of progenitor structures called somites. Various growth factors—molecules that stimulate the growth of cells—in the surrounding tissues work in concert to signal each somitic cell to differentiate into a specific tissue type.

The lab has identified various growth