Super-resolution image of fly gut crypts colonized by the native Lactobacillus (red) and Acetobacter (green) bacteria. Fly cell nuclei appear blue. Image is courtesy of Benjamin Obadia.
Baltimore, MD—The interactions that take place between the species of microbes living in the gastrointestinal system often have large and unpredicted effects on health, according to new work...
Explore this Story
Baltimore, MD—Since Carnegie Institution’s Barbara McClintock received her Nobel Prize on her discovery of jumping genes in 1983, we have learned that almost half of our DNA is made up of...
Explore this Story
Carnegie’s Department of Embryology scientist Steven Farber and team have been awarded a 5-year $3.3-million NIH grant to identify novel pharmaceuticals for combating a host of diseases...
Explore this Story
Tasuku Honjo, a postdoctoral fellow in the Brown Lab at the Department of Embryology 1971-1973, shares the 2018 Nobel Prize in Physiology or Medicine. The ...
Explore this Story
Baltimore, MD— Body organs such as the intestine and ovaries undergo structural changes in response to dietary nutrients that can have lasting impacts on metabolism, as well as cancer...
Explore this Story
Ethan Greenblatt, a senior postdoctoral associate in Allan Spradling’s lab at the Department of Embryology, has been awarded the eleventh Postdoctoral Innovation and Excellence Award....
Explore this Story
Baltimore, MD—The Pew Charitable Trust has awarded Carnegie’s Steve Farber and colleague John F. Rawls of Duke University a $200,000 grant to investigate how dietary nutrients, such as...
Explore this Story
This image shows an example of defects in the development of the embryonic central nervous system in stored eggs that lacked the Fmr1 gene.
Baltimore, MD—New work from Carnegie’s Ethan Greenblatt and Allan Spradling reveals that the genetic factors underlying fragile X syndrome, and potentially other autism-related disorders...
Explore this Story

Pages

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood....
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells...
Meet this Scientist
There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing...
Meet this Scientist
Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by...
Meet this Scientist
You May Also Like...
Matthew Sieber, a postdoctoral fellow at the Department of Embryology, has been honored for his extraordinary accomplishments, through a new program that recognizes exceptional Carnegie...
Explore this Story
Baltimore, MD—New work from Carnegie’s Allan Spradling and Lei Lei demonstrates that mammalian egg cells gain crucial cellular components at an early stage from their undifferentiated sister cells,...
Explore this Story
Baltimore, MD— As we age, the function and regenerative abilities of skeletal muscles deteriorate, which means it is difficult for the elderly to recover from injury or surgery. New work from...
Explore this Story

Explore Carnegie Science

Super-resolution image of fly gut crypts colonized by the native Lactobacillus (red) and Acetobacter (green) bacteria. Fly cell nuclei appear blue. Image is courtesy of Benjamin Obadia.
December 4, 2018

Baltimore, MD—The interactions that take place between the species of microbes living in the gastrointestinal system often have large and unpredicted effects on health, according to new work from a team led by Carnegie’s Will Ludington. Their findings are published this week in Proceedings of the National Academy of Sciences.

The gut microbiome is an ecosystem of hundreds to thousands of microbial species living within the human body.  The sheer diversity within the human gut presents a challenge to cataloging and understanding the effect these communities have on our health.

Biologists are particularly interested in determining whether or not the

November 1, 2018

Baltimore, MD—Since Carnegie Institution’s Barbara McClintock received her Nobel Prize on her discovery of jumping genes in 1983, we have learned that almost half of our DNA is made up of jumping genes—called transposons. Given their ability of jumping around the genome in developing sperm and egg cells, their invasion triggers DNA damage and mutations. This often leads to animal sterility or even death, threatening species survival. The high abundance of jumping genes implies that organisms have survived millions, if not billions, of transposon invasions. However, little is known about where this adaptability comes from. Now, a team of Carnegie researchers has

October 10, 2018

Carnegie’s Department of Embryology scientist Steven Farber and team have been awarded a 5-year $3.3-million NIH grant to identify novel pharmaceuticals for combating a host of diseases associated with altered levels of lipoproteins like LDL (“bad cholesterol”). Obesity, diabetes, cardiovascular disease, fatty liver disease, and metabolic syndrome have all been linked to changes in plasma lipoproteins. 

Lab efforts, led by graduate student Jay Thierer, started by creating zebrafish that have been genetically engineered to produce glowing lipoproteins, a technique they call “LipoGlo”. This was achieved by attaching DNA encoding NanoLuc (a relative

October 1, 2018

Tasuku Honjo, a postdoctoral fellow in the Brown Lab at the Department of Embryology 1971-1973, shares the 2018 Nobel Prize in Physiology or Medicine.

The AsianScientist quoted Honjo as saying: "After I moved to the US as a postdoctoral researcher in the 70s, I met my mentor, Dr. Donald Brown, at the Carnegie Institution for Science in Baltimore. He told me that the major question of immunology at the time was, how do we create such an enormous diversity of antibodies? That question is now ready to be tackled using a molecular strategy." Read the official Nobel press release. Image courtesy Nobel.org

 

 

April 24, 2019

Butterflies are well known for the beautiful colors and patterns that decorate their wings. They function to attract mates, provide camouflage, or ward off predators. Many colors are created by pigments within the scales, but others, especially blues and greens, are produced by a remarkable phenomenon known as structural coloration.

In structural coloration, nanostructures, which are smaller than the wavelength of light, amplify certain colors and diminish others to create dazzling hues. On April 24th, Dr. Nipam Patel will describe a number of butterfly species that use structural coloration, and recent genetic and cellular insights into how scale cells generate the necessary

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH action, the Donald Brown lab studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis, from South Africa, because it is easy to rear. Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH. How can a simple molecule control so many different developmental changes? The hormone works by regulating the expression of groups of

Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30,000 human genes, 98% of DNA sequences are comprised of repetitive and regulatory sequences within and between genes. Measuring the specific set of DNA sequences that are transcribed into RNA helps reveal what and how our tissues are doing by showing which genes are active.

Modern sequencing platforms, such as the Illumina HiSeq 2000, generate only short, ordered sequences, usually 100

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH, director emeritus Donald Brown studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis from South Africa.

 Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the