Michael Diamreyan with Yixian Zheng, Frederick Tan, and Minjie Hu courtesy of Navid Marvi, Carnegie Embryology.
Baltimore, MD—Michael Diamreyan, a Johns Hopkins University undergraduate biophysics student with a Carnegie connection, has been awarded two prestigious research grants to further his...
Explore this Story
Super-resolution image of fly gut crypts colonized by the native Lactobacillus (red) and Acetobacter (green) bacteria. Fly cell nuclei appear blue. Image is courtesy of Benjamin Obadia.
Baltimore, MD—The interactions that take place between the species of microbes living in the gastrointestinal system often have large and unpredicted effects on health, according to new work...
Explore this Story
Baltimore, MD—Since Carnegie Institution’s Barbara McClintock received her Nobel Prize on her discovery of jumping genes in 1983, we have learned that almost half of our DNA is made up of...
Explore this Story
Carnegie’s Department of Embryology scientist Steven Farber and team have been awarded a 5-year $3.3-million NIH grant to identify novel pharmaceuticals for combating a host of diseases...
Explore this Story
Tasuku Honjo, a postdoctoral fellow in the Brown Lab at the Department of Embryology 1971-1973, shares the 2018 Nobel Prize in Physiology or Medicine. The ...
Explore this Story
Baltimore, MD— Body organs such as the intestine and ovaries undergo structural changes in response to dietary nutrients that can have lasting impacts on metabolism, as well as cancer...
Explore this Story
Ethan Greenblatt, a senior postdoctoral associate in Allan Spradling’s lab at the Department of Embryology, has been awarded the eleventh Postdoctoral Innovation and Excellence Award....
Explore this Story
Baltimore, MD—The Pew Charitable Trust has awarded Carnegie’s Steve Farber and colleague John F. Rawls of Duke University a $200,000 grant to investigate how dietary nutrients, such as...
Explore this Story

Pages

Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood....
Explore this Project
In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and...
Explore this Project
The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB). Much of the work makes use of the giant...
Explore this Project
Steven Farber
In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and...
Meet this Scientist
Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by...
Meet this Scientist
Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30...
Meet this Scientist
You May Also Like...
Baltimore, MD—As animals age, their immune systems gradually deteriorate, a process called immunosenescence. It is associated with systemic inflammation and chronic inflammatory disorders, as well as...
Explore this Story
Carnegie’s Department of Embryology scientist Steven Farber and team have been awarded a 5-year $3.3-million NIH grant to identify novel pharmaceuticals for combating a host of diseases associated...
Explore this Story
The American Society for Cell Biology profiles Yixian Zheng and her recent papers on the elusive spindle matrix. "Zheng’s lab identifies new regulators in spindle assembly, all...
Explore this Story

Explore Carnegie Science

Michael Diamreyan with Yixian Zheng, Frederick Tan, and Minjie Hu courtesy of Navid Marvi, Carnegie Embryology.
March 21, 2019

Baltimore, MD—Michael Diamreyan, a Johns Hopkins University undergraduate biophysics student with a Carnegie connection, has been awarded two prestigious research grants to further his independent investigations.  He is a member of Carnegie Embryology Director Yixian Zheng’s laboratory team, in collaboration with the department’s bioinformatician, Frederick Tan.

Diamreyan received an ASPIRE Grant (formerly called DURA grants), which recognizes “exceptional undergraduate students” from the Krieger School of Arts and Sciences at Johns Hopkins University (JHU) with funding for independent research projects. He was also named an Amgen Scholar, which

Super-resolution image of fly gut crypts colonized by the native Lactobacillus (red) and Acetobacter (green) bacteria. Fly cell nuclei appear blue. Image is courtesy of Benjamin Obadia.
December 4, 2018

Baltimore, MD—The interactions that take place between the species of microbes living in the gastrointestinal system often have large and unpredicted effects on health, according to new work from a team led by Carnegie’s Will Ludington. Their findings are published this week in Proceedings of the National Academy of Sciences.

The gut microbiome is an ecosystem of hundreds to thousands of microbial species living within the human body.  The sheer diversity within the human gut presents a challenge to cataloging and understanding the effect these communities have on our health.

Biologists are particularly interested in determining whether or not the

November 1, 2018

Baltimore, MD—Since Carnegie Institution’s Barbara McClintock received her Nobel Prize on her discovery of jumping genes in 1983, we have learned that almost half of our DNA is made up of jumping genes—called transposons. Given their ability of jumping around the genome in developing sperm and egg cells, their invasion triggers DNA damage and mutations. This often leads to animal sterility or even death, threatening species survival. The high abundance of jumping genes implies that organisms have survived millions, if not billions, of transposon invasions. However, little is known about where this adaptability comes from. Now, a team of Carnegie researchers has

October 10, 2018

Carnegie’s Department of Embryology scientist Steven Farber and team have been awarded a 5-year $3.3-million NIH grant to identify novel pharmaceuticals for combating a host of diseases associated with altered levels of lipoproteins like LDL (“bad cholesterol”). Obesity, diabetes, cardiovascular disease, fatty liver disease, and metabolic syndrome have all been linked to changes in plasma lipoproteins. 

Lab efforts, led by graduate student Jay Thierer, started by creating zebrafish that have been genetically engineered to produce glowing lipoproteins, a technique they call “LipoGlo”. This was achieved by attaching DNA encoding NanoLuc (a relative

April 24, 2019

Butterflies are well known for the beautiful colors and patterns that decorate their wings. They function to attract mates, provide camouflage, or ward off predators. Many colors are created by pigments within the scales, but others, especially blues and greens, are produced by a remarkable phenomenon known as structural coloration.

In structural coloration, nanostructures, which are smaller than the wavelength of light, amplify certain colors and diminish others to create dazzling hues. On April 24th, Dr. Nipam Patel will describe a number of butterfly species that use structural coloration, and recent genetic and cellular insights into how scale cells generate the necessary

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use a wide range of tools, including genetics in different model organisms, cell culture, biochemistry, proteomics, and genomics.

Cell division is essential for all organisms to grow and live. During a specific time in a cell’s cycle the elongated apparatus consisting of string-like micro-tubules called the spindle is assembled to

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry.

Using the tiny zebrafish, Danio rerio, Halpern explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord. The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to

The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing factors, is needed before messenger RNA (mRNA) can be exported to the cytoplasm, the area surrounding the nucleus.

Although the biochemical details of transcription and RNA processing are known, relatively little is understood about their cellular organization. Joseph G. Gall has been an intellectual leader and has made seminal breakthroughs in our understanding of chromosomes, nuclei and