Allan Spradling offers input to The Scientist on a paper about female Japanese rice fish producing sperm....
Explore this Story
Dr. Matthew P. Scott President, Carnegie Institution for Science Carnegie Astronomy is also part of Carnegie Science and the study of all living species. From ancient single-celled organisms evolved...
Explore this Story
A Carnegie Evening Lecture Dr. Allan Spradling, Director Department of Embryology, Carnegie Institution for Science Eggs are uniquely important animal cells. Only eggs can support the development of...
Explore this Story
Mitotic proteins take on editorial duties in this writeup of new work from Yixian Zheng's lab in The Journal of Cell Biology....
Explore this Story
Cells often face low-oxygen conditions at night. When this happens, some organisms such as the single-cell alga Chlamydomonas are able to generate cellular energy from the breakdown of sugars...
Explore this Story
Nutrition and metabolism are closely linked with reproductive health. Several reproductive disorders have been linked to malnutrition, diabetes, and obesity. Furthermore, fasting in numerous species...
Explore this Story
Baltimore, MD— Nutrition and metabolism are closely linked with reproductive health. Several reproductive disorders including polycystic ovary syndrome, amenorrhea, and ovarian cancer have been...
Explore this Story
Baltimore, MD—The newest member of the staff at the Carnegie Department of Embryology, Junior Investigator Zhao Zhang, received the prestigious Larry Sandler Memorial Award at the 56th Annual...
Explore this Story

Pages

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and...
Explore this Project
In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and...
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the...
Meet this Scientist
The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology...
Meet this Scientist
Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells...
Meet this Scientist
You May Also Like...
Carnegie’s Director of Embryology Yixian Zheng is one of 15 scientists awarded a grant from the Gordon and Betty Moore Foundation to support research on symbiosis in aquatic systems....
Explore this Story
San Diego, CA— Ghosts are not your typical cell biology research subjects. But scientists at the Carnegie Institution for Science and the National Institute of Child Health and Human Development (...
Explore this Story
AudioBaltimore, MD— One classical question in developmental biology is how different tissue types arise in the correct position of the developing embryo. While one signaling pathway that controls...
Explore this Story

Explore Carnegie Science

Coral and legume roots. New staff scientists study symbiosis in these systems.
August 19, 2020

Baltimore, MD— Carnegie’s Department of Embryology welcomes two new Staff Scientists, both of whom specialize in researching the symbiotic relationships between species.

Brittany Belin joined Carnegie this month from Caltech and Phillip Cleves will arrive in September from Stanford University. Although their work approaches the issue using different organisms, their investigations are important to understanding survival mechanisms in the increasingly stressful conditions caused by climate change.

Belin’s postdoctoral research focused on soil bacteria called rhizobia, which form symbiotic relationships with legumes such as soybeans and alfalfa. The microbes

Experimental zebrafish larvae, courtesy Navid Marvi.
August 7, 2020

Baltimore, MD—New work led by Carnegie’s Meredith Wilson and Steve Farber identifies a potential therapeutic target for clogged arteries and other health risks that stem from an excess of harmful fats in the bloodstream.  Their findings are published by PLOS Genetics. 

“Cardiovascular disease occurs when lipids from the blood plasma are deposited in the walls of blood vessels, ultimately restricting blood flow,” explained Farber, who specializes in elucidating how cells process lipids. “This complex disease affects about a third of the world’s population, so improving our understanding of the mechanisms that regulate the levels of

Xenia in Carnegie's coral facility, courtesy Carnegie Embryology
June 17, 2020

Baltimore, MD— New work from a team of Carnegie cell, genomic, and developmental biologists solves a longstanding marine science mystery that could aid coral conservation. The researchers identified the type of cell that enables a soft coral to recognize and take up the photosynthetic algae with which it maintains a symbiotic relationship, as well as the genes responsible for this transaction.

Their breakthrough research is published in Nature.

Corals are marine invertebrates that build large exoskeletons from which reefs are constructed. But this architecture is only possible because of a mutually beneficial relationship between the coral and various species of

Yixian Zheng
March 11, 2020

Baltimore, MD— Carnegie’s Director of Embryology Yixian Zheng is one of 15 scientists awarded a grant from the Gordon and Betty Moore Foundation to support research on symbiosis in aquatic systems.

For the past two years, Zheng and her colleagues have been working to elucidate the molecular mechanisms of endosymbiosis in the relationships between coral and jellyfish and the photosynthetic algal species that they host. She has been building on Carnegie’s longstanding tradition of model organism development to begin revealing the genetics underlying the uptake and sustenance of symbiotic dinoflagellates by the soft coral species Xenia.

“I have always

No content in this section.

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

Allan Spradling is a Howard Hughes Medical Institute Investigator and director emeritus of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic cells—those that turn into non-reproductive tissues. Spradling uses the fruit fly Drosophila because the genes and processes studied are likely to be similar to those in other organisms including humans. In the 1980s he and his colleague, Gerald Rubin, showed how jumping genes could be used to identify and manipulate fruit fly genes. Their innovative technique helped establish

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Steven Farber

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.