The American Society for Cell Biology profiles Yixian Zheng and her recent papers on the elusive spindle matrix. "Zheng’s lab identifies new regulators in spindle assembly, all...
Explore this Story
Two researchers, Martin Jonikas of Carnegie’s Department of Plant Biology and Zhao Zhang of the Department of Embryology, have been awarded the New Innovator and Early Independence Awards,...
Explore this Story
Baltimore, MD— Every high school biology class learns about the tiny cells that comprise our bodies, as well as about many of the diverse actions that they perform. One of these actions is...
Explore this Story
Baltimore, MD—Carnegie’s BioEYES K-12 science educational program launches a new center sponsored by the University of Utah, Department of Pediatrics, Pediatric Research Enterprise. The...
Explore this Story
Allan Spradling offers input to The Scientist on a paper about female Japanese rice fish producing sperm....
Explore this Story
Dr. Matthew P. Scott President, Carnegie Institution for Science Carnegie Astronomy is also part of Carnegie Science and the study of all living species. From ancient single-celled organisms evolved...
Explore this Story
A Carnegie Evening Lecture Dr. Allan Spradling, Director Department of Embryology, Carnegie Institution for Science Eggs are uniquely important animal cells. Only eggs can support the development of...
Explore this Story
Mitotic proteins take on editorial duties in this writeup of new work from Yixian Zheng's lab in The Journal of Cell Biology....
Explore this Story

Pages

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and...
Explore this Project
The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous...
Explore this Project
Allan Spradling is a Howard Hughes Medical Institute Investigator and director emeritus of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern...
Meet this Scientist
Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by...
Meet this Scientist
Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30...
Meet this Scientist
You May Also Like...
Baltimore, MD—New work from Carnegie’s Allan Spradling and Lei Lei demonstrates that mammalian egg cells gain crucial cellular components at an early stage from their undifferentiated sister cells,...
Explore this Story
Baltimore, MD--Cells in the body wear down over time and die. In many organs, like the small intestine, adult stem cells play a vital role in maintaining function by replacing old cells with new ones...
Explore this Story
The brain is the body’s mission control center, sending messages to the other organs about how to respond to various external and internal stimuli. Located in the forebrain, the habenular...
Explore this Story

Explore Carnegie Science

Heart Reef in Australia's Great Barrier Reef, public domain.
December 21, 2020

Baltimore, MD— The CRISPR/Cas9 genome editing system can help scientists understand, and possibly improve, how corals respond to the environmental stresses of climate change. Work led by Phillip Cleves—who joined Carnegie’s Department of Embryology this fall—details how the revolutionary, Nobel Prize-winning technology can be deployed to guide conservation efforts for fragile reef ecosystems.

Cleves’ research team’s findings were recently published in two papers in the Proceedings of the National Academy of Sciences.

Corals are marine invertebrates that build extensive calcium carbonate skeletons from which reefs are constructed. But this

Orange peyssonnelid algal crusts courtesy of Peter Edmunds.
November 30, 2020

Baltimore, MD—Human activity endangers coral health around the world. A new algal threat is taking advantage of coral’s already precarious situation in the Caribbean and making it even harder for reef ecosystems to grow.

Just-published research in Scientific Reports details how an aggressive, golden-brown, crust-like alga is rapidly overgrowing shallow reefs, taking the place of coral that was damaged by extreme storms and exacerbating the damage caused by ocean acidification, disease, pollution, and bleaching.

For the past four years, the University of Oxford’s Bryan Wilson, Carnegie’s Chen‑Ming Fan, and California State University Northridge’

October 8, 2020

Baltimore, MD— Recently published work from Carnegie’s Allan Spradling and Wanbao Niu revealed in unprecedented detail the genetic instructions immature egg cells go through step by step as they mature into functionality. Their findings improve our understanding of how ovaries maintain a female’s fertility.

The general outline of how immature egg cells are assisted by specific ovarian helper cells starting even before a female is born is well understood. But Spradling and Niu mapped the gene activity of thousands of immature egg cells and helper cells to learn how the stage is set for fertility later in life.

Even before birth, "germ" cells

October 8, 2020

Baltimore, MD— Recent work led by Carnegie’s Kamena Kostova revealed a new quality control system in the protein production assembly line with possible implications for understanding neurogenerative disease.

The DNA that comprises the chromosomes housed in each cell’s nucleus encodes the recipes for how to make proteins, which are responsible for the majority of the physiological actions that sustain life. Individual recipes are transcribed using messenger RNA, which carries this piece of code to a piece of cellular machinery called the ribosome. The ribosome translates the message into amino acids—the building blocks of proteins.

But sometimes

No content in this section.

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling

Brittany Belin joined the Department of Embryology staff in August 2020. Her Ph.D. research involved developing new tools for in vivo imaging of actin in cell nuclei. Actin is a major structural element in eukaryotic cells—cells with a nucleus and organelles —forming contractile polymers that drive muscle contraction, the migration of immune cells to  infection sites, and the movement of signals from one part of a cell to another. Using the tools developed in her Ph.D., Belin discovered a new role for actin in aiding the repair of DNA breaks in human cells caused by carcinogens, UV light, and other mutagens.

Belin changed course for her postdoctoral work, in

The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH, director emeritus Donald Brown studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis from South Africa.

 Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH

Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use a wide range of tools, including genetics in different model organisms, cell culture, biochemistry, proteomics, and genomics.

Cell division is essential for all organisms to grow and live. During a specific time in a cell’s cycle the elongated apparatus consisting of string-like micro-tubules called the spindle is assembled to

Steven Farber

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.