Baltimore, MD—Allan C. Spradling, Director Emeritus of Carnegie’s Department of Embryology, has been awarded the 23rd March of Dimes and Richard B. Johnson, Jr., MD Prize in...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Neta Schwartz
Washington, DC—Not too long ago, biologists would induce mutations in an entire genome, isolate an organism that displayed a resulting disease or abnormality that they wanted to study, and then...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Baltimore, MD— The brain is the body’s mission control center, sending messages to the other organs about how to respond to various external and internal stimuli. Located in the forebrain...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Washington, D.C.--Yixian Zheng has been selected to direct Carnegie’s Department of Embryology in Baltimore, Maryland. She has been Acting Director since February 1st of 2016. Carnegie...
Explore this Story
Washington, D.C.—BioEYES was accepted to participate in a National Science Foundation (NSF) video competition on May 15-22, 2017. BioEYES supporters are encouraged to go to the competition...
Explore this Story
On Tuesday night, George Church told us that a fascination with animatronic Abraham Lincoln at the 1964 World’s Fair partially inspired him to become a scientist. This seems fitting, somehow,...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Baltimore, MD—Studying how our bodies metabolize lipids such as fatty acids, triglycerides, and cholesterol can teach us about cardiovascular disease, diabetes, and other health problems, as...
Explore this Story
People often call dogs “man’s best friend.” But after Elaine Ostrander’s presentation at our Washington, DC, headquarters Thursday, we think that moniker should probably be...
Explore this Story

Pages

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and...
Explore this Project
Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous...
Explore this Project
The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH,...
Meet this Scientist
Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30...
Meet this Scientist
The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing...
Meet this Scientist
You May Also Like...
Baltimore, MD — In mammals, most lipids (such as fatty acids and cholesterol) are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make...
Explore this Story
Baltimore, MD—As animals age, their immune systems gradually deteriorate, a process called immunosenescence. It is associated with systemic inflammation and chronic inflammatory disorders, as well as...
Explore this Story
The American Society for Cell Biology profiles Yixian Zheng and her recent papers on the elusive spindle matrix. "Zheng’s lab identifies new regulators in spindle assembly, all...
Explore this Story

Explore Carnegie Science

This image captures the bright blue light (chemiluminesc ence) emitted by the NanoLuc protein in LipoGlo zebrafish. It is is provided courtesy of James Thierer.
July 31, 2019

Baltimore, MD—A newly developed technique that shows artery clogging fat-and-protein complexes in live fish gave investigators from Carnegie, Johns Hopkins University, and the Mayo Clinic a glimpse of how to study heart disease in action. Their research, which is currently being used to find new drugs to fight cardiovascular disease, is now published in Nature Communications.

Fat molecules, also called lipids, such as cholesterol and triglycerides are shuttled around the circulatory system by a protein called Apolipoprotein-B, or ApoB for short. These complexes of lipid and protein are called lipoproteins but may be more commonly known as “bad cholesterol.”

One analogy for understanding the mathematical structure of the team's work is to think of it as foam being simplified into a single bubble by progressively merging adjacent bubbles.
July 2, 2019

Baltimore, MD—How do the communities of microbes living in our gastrointestinal systems affect our health? Carnegie’s Will Ludington was part of a team that helped answer this question.

For nearly a century, evolutionary biologists have probed how genes encode an individual’s chances for success—or fitness—in a specific environment.

In order to reveal a potential evolutionary trajectory biologists measure the interactions between genes to see which combinations are most fit.  An organism that is evolving should take the most fit path. This concept is called a fitness landscape, and various mathematical techniques have been developed to

June 17, 2019

Meredith Wilson, a postdoctoral associate in Steve Farber’s lab at the Department of Embryology, has been awarded Carnegie’s thirteenth Postdoctoral Innovation and Excellence Award. These prizes are given to postdocs for their exceptionally creative approaches to science, strong mentoring, and contributing to the sense of campus community. The nominations are made by the departments and are chosen by the Office of the President. The recipients receive a cash prize and are celebrated at an event at their departments.  

Wilson came to Carnegie in 2014 from the University of Pennsylvania with a background in cell biology investigating how motor proteins position

Illustration of a thymus in a human chest courtesy of Navid Marvi.
May 29, 2019

Washington, DC—Aging-related inflammation can drive the decline of a critical structural protein called lamin-B1, which contributes to diminished immune function in the thymus, according to research from Carnegie’s Sibiao Yue, Xiaobin Zheng, and Yixian Zheng published in Aging Cell.

Each of our cells is undergirded by a protein-based cellular skeleton. And each of our tissues is likewise supported by a protein matrix holding the cells that comprise it together. These protein scaffolds or structures are necessary for organs and tissues to be constructed during development.

“Since organ building and maintenance require this protein-based structural support

No content in this section.

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30,000 human genes, 98% of DNA sequences are comprised of repetitive and regulatory sequences within and between genes. Measuring the specific set of DNA sequences that are transcribed into RNA helps reveal what and how our tissues are doing by showing which genes are active.

Modern sequencing platforms, such as the Illumina HiSeq 2000, generate only short, ordered sequences, usually 100

The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH, director emeritus Donald Brown studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis from South Africa.

 Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH

There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry.

Using the tiny zebrafish, Danio rerio, Halpern explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord. The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to

Steven Farber

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.