Baltimore, MD—As animals age, their immune systems gradually deteriorate, a process called immunosenescence. It is associated with systemic inflammation and chronic inflammatory disorders, as...
Explore this Story
The hypothalamus is an essential brain center that maintains multiple physiological homeostatic processes by modulating pituitary hormone secretions. Two centers (nuclei) of the hypothalamus, the...
Explore this Story
September 16, 2014 Speaker: Dr. Matthew P. Scott Why do we look like our parents? We inherit particular versions of genes that shape our growth. For a long time these genes were unknown and it was...
Explore this Story
Baltimore, MD--The General Motors Corporation is presenting a $5,000.00 award to Carnegie’s BioEYES K-12 educational program on September 11, 2014, to deliver a two-week environmental curriculum,...
Explore this Story
Baltimore, MD— A woman’s supply of eggs is a precious commodity because only a few hundred mature eggs can be produced throughout her lifetime and each must be as free as possible from genetic damage...
Explore this Story
Audio Baltimore, MD—Exposure to environmental endocrine disrupters, such as bisphenol A, which mimic estrogen, is associated with adverse...
Explore this Story
YouTubeBaltimore, MD— As all school-children learn, cells divide using a process called mitosis, which consists of a number of phases during...
Explore this Story
AudioBaltimore, MD— One classical question in developmental biology is how different tissue types arise in the correct position of the...
Explore this Story

Pages

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and...
Explore this Project
The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and...
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the...
Meet this Scientist
Allan Spradling is a Howard Hughes Medical Institute Investigator and director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic...
Meet this Scientist
There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing...
Meet this Scientist
You May Also Like...
Baltimore, MD--Cells in the body wear down over time and die. In many organs, like the small intestine, adult stem cells play a vital role in maintaining function by replacing old cells with new ones...
Explore this Story
Baltimore, MD—Carnegie’s educational outreach program, BioEYES, will be the recipient of the 2012 Viktor Hamburger Outstanding Educator Prize from the Society for Developmental Biology. BioEYES...
Explore this Story
Baltimore, MD—The newest member of the staff at the Carnegie Department of Embryology, Junior Investigator Zhao Zhang, received the prestigious Larry Sandler Memorial Award at the 56th Annual...
Explore this Story

Explore Carnegie Science

Fetal Oocyte Attrition prevention, courtesy Marla Tharp and Navid Marvi.
January 16, 2020

Baltimore, MD— A woman’s supply of eggs is finite, so it is crucial that the quality of their genetic material is ensured. New work from Carnegie’s Marla Tharp, Safia Malki, and Alex Bortvin elucidates a mechanism by which, even before birth, the body tries to eliminate egg cells of the poorest quality. Their findings describing this mechanism are published by Nature Communications.

“Some organisms produce a large number of offspring, many of which don’t survive to adulthood; females in these species continually produce new egg cells throughout their reproductive lives,” Bortvin explained. “But in mammals, females are born with a fixed

Patellar tendon 30 days after an injury courtesy of Tyler Harvey.
November 25, 2019

Baltimore, MD—The buildup of scar tissue makes recovery from torn rotator cuffs, jumper’s knee, and other tendon injuries a painful, challenging process, often leading to secondary tendon ruptures. New research led by Carnegie’s Chen-Ming Fan and published in Nature Cell Biology reveals the existence of tendon stem cells that could potentially be harnessed to improve tendon healing and even to avoid surgery.

“Tendons are connective tissue that tether our muscles to our bones,” Fan explained. “They improve our stability and facilitate the transfer of force that allows us to move. But they are also particularly susceptible to injury and damage.

Kamena Kostova, courtesy Navid Marvi, Carnegie Institution for Science
October 1, 2019

Baltimore, MD— Carnegie biologist Kamena Kostova has been selected for the Director’s Early Independence Award from the National Institutes of Health, which is designed to provide “exceptional junior scientists” with the opportunity to “skip traditional post-doctoral training and move immediately into independent research positions.”

Kostova is one of 13 recipients of the 2019 Early Independence Award. The recognition is part of a suite of four that comprise the NIH Director’s High-Risk, High-Reward Research Program, which honors “highly innovative biomedical or behavioral research proposed by extraordinarily creative scientists.

GDNF repairs aged muscle stem cells courtesy of Liangji Li.
September 30, 2019

Washington, DC— An age-related decline in recovery from muscle injury can be traced to a protein that suppresses the special ability of muscle stem cells to build new muscles, according to work from a team of current and former Carnegie biologists led by Chen-Ming Fan and published in Nature Metabolism.

Skeletal muscles have a tremendous capacity to make new muscles from special muscle stem cells. These “blank” cells are not only good at making muscles but also at generating more of themselves, a process called self-renewal. But their amazing abilities diminish with age, resulting in poorer muscle regeneration from muscle trauma.

The research team—

No content in this section.

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing factors, is needed before messenger RNA (mRNA) can be exported to the cytoplasm, the area surrounding the nucleus.

Although the biochemical details of transcription and RNA processing are known, relatively little is understood about their cellular organization. Joseph G. Gall has been an intellectual leader and has made seminal breakthroughs in our understanding of chromosomes, nuclei and

Allan Spradling is a Howard Hughes Medical Institute Investigator and director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic cells—those that turn into non-reproductive tissues. Spradling uses the fruit fly Drosophila because the genes and processes studied are likely to be similar to those in other organisms including humans. In the 1980s he and his colleague, Gerald Rubin, showed how jumping genes could be used to identify and manipulate fruit fly genes. Their innovative technique helped establish Drosophila

There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry.

Using the tiny zebrafish, Danio rerio, Halpern explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord. The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to