Baltimore, MD— Nutrition and metabolism are closely linked with reproductive health. Several reproductive disorders including polycystic ovary syndrome, amenorrhea, and ovarian cancer have been...
Explore this Story
Baltimore, MD—The newest member of the staff at the Carnegie Department of Embryology, Junior Investigator Zhao Zhang, received the prestigious Larry Sandler Memorial Award at the 56th Annual...
Explore this Story
February 11, 2015 Dr. Douglas Koshland, University of California Berkeley, Department of Molecular & Cell Biology Remarkable organisms exemplify extremes in the spectrum of life, like transparent...
Explore this Story
We would not expect a baby to join a team or participate in social situations that require sophisticated communication. Yet, most developmental biologists have assumed that young cells, only recently...
Explore this Story
Baltimore MD— We would not expect a baby to join a team or participate in social situations that require sophisticated communication. Yet, most developmental biologists have assumed that young...
Explore this Story
Tuesday, November 25, 2014, Baltimore, MD—Biologist Marnie Halpern of Carnegie’s Department of Embryology has been named a Fellow of the American Association for the Advancement of...
Explore this Story
In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very...
Explore this Story
As animals age, their immune systems gradually deteriorate, a process called immunosenescence. It is associated with systemic inflammation and chronic inflammatory disorders, as well as with many...
Explore this Story

Pages

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB). Much of the work makes use of the giant...
Explore this Project
The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into...
Explore this Project
The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the...
Meet this Scientist
Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question...
Meet this Scientist
The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing...
Meet this Scientist
You May Also Like...
Baltimore, MD— Eggs take a long time to produce in the ovary, and thus are one of a body’s precious resources. It has been theorized that the body has mechanisms to help the ovary ensure that...
Explore this Story
The interactions that take place between the species of microbes living in the gastrointestinal system often have large and unpredicted effects on health, according to new work led by Carnegie’...
Explore this Story
Carnegie biologist Kamena Kostova has been selected for the Director’s Early Independence Award from the National Institutes of Health, which is designed to provide “exceptional...
Explore this Story

Explore Carnegie Science

Fetal Oocyte Attrition prevention, courtesy Marla Tharp and Navid Marvi.
January 16, 2020

Baltimore, MD— A woman’s supply of eggs is finite, so it is crucial that the quality of their genetic material is ensured. New work from Carnegie’s Marla Tharp, Safia Malki, and Alex Bortvin elucidates a mechanism by which, even before birth, the body tries to eliminate egg cells of the poorest quality. Their findings describing this mechanism are published by Nature Communications.

“Some organisms produce a large number of offspring, many of which don’t survive to adulthood; females in these species continually produce new egg cells throughout their reproductive lives,” Bortvin explained. “But in mammals, females are born with a fixed

Patellar tendon 30 days after an injury courtesy of Tyler Harvey.
November 25, 2019

Baltimore, MD—The buildup of scar tissue makes recovery from torn rotator cuffs, jumper’s knee, and other tendon injuries a painful, challenging process, often leading to secondary tendon ruptures. New research led by Carnegie’s Chen-Ming Fan and published in Nature Cell Biology reveals the existence of tendon stem cells that could potentially be harnessed to improve tendon healing and even to avoid surgery.

“Tendons are connective tissue that tether our muscles to our bones,” Fan explained. “They improve our stability and facilitate the transfer of force that allows us to move. But they are also particularly susceptible to injury and damage.

Kamena Kostova, courtesy Navid Marvi, Carnegie Institution for Science
October 1, 2019

Baltimore, MD— Carnegie biologist Kamena Kostova has been selected for the Director’s Early Independence Award from the National Institutes of Health, which is designed to provide “exceptional junior scientists” with the opportunity to “skip traditional post-doctoral training and move immediately into independent research positions.”

Kostova is one of 13 recipients of the 2019 Early Independence Award. The recognition is part of a suite of four that comprise the NIH Director’s High-Risk, High-Reward Research Program, which honors “highly innovative biomedical or behavioral research proposed by extraordinarily creative scientists.

GDNF repairs aged muscle stem cells courtesy of Liangji Li.
September 30, 2019

Washington, DC— An age-related decline in recovery from muscle injury can be traced to a protein that suppresses the special ability of muscle stem cells to build new muscles, according to work from a team of current and former Carnegie biologists led by Chen-Ming Fan and published in Nature Metabolism.

Skeletal muscles have a tremendous capacity to make new muscles from special muscle stem cells. These “blank” cells are not only good at making muscles but also at generating more of themselves, a process called self-renewal. But their amazing abilities diminish with age, resulting in poorer muscle regeneration from muscle trauma.

The research team—

No content in this section.

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use a wide range of tools, including genetics in different model organisms, cell culture, biochemistry, proteomics, and genomics.

Cell division is essential for all organisms to grow and live. During a specific time in a cell’s cycle the elongated apparatus consisting of string-like micro-tubules called the spindle is assembled to

Allan Spradling is a Howard Hughes Medical Institute Investigator and director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic cells—those that turn into non-reproductive tissues. Spradling uses the fruit fly Drosophila because the genes and processes studied are likely to be similar to those in other organisms including humans. In the 1980s he and his colleague, Gerald Rubin, showed how jumping genes could be used to identify and manipulate fruit fly genes. Their innovative technique helped establish Drosophila

The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the musculoskeletal system to develop in the mammalian embryo. Skin, muscle, cartilage, and bone are all derived from a group of progenitor structures called somites. Various growth factors—molecules that stimulate the growth of cells—in the surrounding tissues work in concert to signal each somitic cell to differentiate into a specific tissue type.

The lab has identified various growth