Tuesday, November 25, 2014, Baltimore, MD—Biologist Marnie Halpern of Carnegie’s Department of Embryology has been named a Fellow of the American Association for the Advancement of Science (AAAS) for...
Explore this Story
In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very...
Explore this Story
As animals age, their immune systems gradually deteriorate, a process called immunosenescence. It is associated with systemic inflammation and chronic inflammatory disorders, as well as with many...
Explore this Story
Baltimore, MD—As animals age, their immune systems gradually deteriorate, a process called immunosenescence. It is associated with systemic inflammation and chronic inflammatory disorders, as well as...
Explore this Story
The hypothalamus is an essential brain center that maintains multiple physiological homeostatic processes by modulating pituitary hormone secretions. Two centers (nuclei) of the hypothalamus, the...
Explore this Story
September 16, 2014 Speaker: Dr. Matthew P. Scott Why do we look like our parents? We inherit particular versions of genes that shape our growth. For a long time these genes were unknown and it was...
Explore this Story
Baltimore, MD--The General Motors Corporation is presenting a $5,000.00 award to Carnegie’s BioEYES K-12 educational program on September 11, 2014, to deliver a two-week environmental curriculum,...
Explore this Story
Baltimore, MD— A woman’s supply of eggs is a precious commodity because only a few hundred mature eggs can be produced throughout her lifetime and each must be as free as possible from genetic damage...
Explore this Story

Pages

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into...
Explore this Project
Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is...
Explore this Project
The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH,...
Meet this Scientist
The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing...
Meet this Scientist
Yixian Zheng, director of the Department of Embryology, serves as co-interim president of Carnegie as of January 1, 2018. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells,...
Meet this Scientist
You May Also Like...
San Diego, CA— Ghosts are not your typical cell biology research subjects. But scientists at the Carnegie Institution for Science and the National Institute of Child Health and Human Development (...
Explore this Story
Baltimore, MD—Director Emeritus Donald Brown, of Carnegie’s Department of Embryology, receives the prestigious 2012 Lasker-Koshland Special Achievement Award in Medical Science “For exceptional...
Explore this Story
Baltimore, MD — The study of muscular system protein myostatin has been of great interest to researchers as a potential therapeutic target for people with muscular disorders. Although much is known...
Explore this Story

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Neta Schwartz
November 27, 2017

Washington, DC—Not too long ago, biologists would induce mutations in an entire genome, isolate an organism that displayed a resulting disease or abnormality that they wanted to study, and then work backward to determine which gene was responsible for the defect.  This process often took years to yield definitive results.

Now, thanks to the CRISPR/Cas9 genome-editing tool, biologists can target specific genes for mutation and then see how this induced mutation manifests in an organism—tackling the problem from the other direction. But they are finding that the expected physical changes don’t always occur.

Why?

New work from Carnegie’s Steven Farber and Jennifer

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 13, 2017

Baltimore, MD— The brain is the body’s mission control center, sending messages to the other organs about how to respond to various external and internal stimuli. Located in the forebrain, the habenular region is one such message-conducting system. Two new papers from Carnegie scientists explain how the habenulae develop and their unsuspected role in recovering from fear.

Found in all vertebrates, the bilaterally paired habenulae regulate the transmission of dopamine and serotonin, two important chemicals related to motor control, mood, and learning.

Previous research has shown that the habenular system is involved in modulating sleep cycles, anxiety, and pain and reward

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 6, 2017

Washington, D.C.--Yixian Zheng has been selected to direct Carnegie’s Department of Embryology in Baltimore, Maryland. She has been Acting Director since February 1st of 2016.

Carnegie president Matthew Scott remarked, “Yixian has been an exceptional leader of the department as Acting Director. We are extremely pleased that she took on this job permanently.  Her fascinating science, independent thinking, vision, extraordinary management skills, and perfect temperament are a tremendous asset to Carnegie Science.”

The Zheng lab has a long-standing interest in cell division and the cytoskeleton—the lattice arrangement of rods and fibers and motors that gives shape to cells and

May 15, 2017

Washington, D.C.—BioEYES was accepted to participate in a National Science Foundation (NSF) video competition on May 15-22, 2017. BioEYES supporters are encouraged to go to the competition website at stemforall2017.videohall.com and share and vote for the BioEYES video! (Note the guidelines for the three ways to vote. Watch the video directly here http://stemforall2017.videohall.com/p/1025)

Project BioEYES, based at Carnegie’s Department of Embryology in Baltimore, MD, (www.bioeyes.org) uses live zebrafish to teach basic scientific principles, animal development, and genetics to underrepresented students, while training teachers in Science, Technology, Engineering and Mathematics

No content in this section.

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given the crucial role of the precursor cells to egg

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling the

The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the musculoskeletal system to develop in the mammalian embryo. Skin, muscle, cartilage, and bone are all derived from a group of progenitor structures called somites. Various growth factors—molecules that stimulate the growth of cells—in the surrounding tissues work in concert to signal each somitic cell to differentiate into a specific tissue type.

The lab has identified various growth factors that

Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30,000 human genes, 98% of DNA sequences are comprised of repetitive and regulatory sequences within and between genes. Measuring the specific set of DNA sequences that are transcribed into RNA helps reveal what and how our tissues are doing by showing which genes are active.

Modern sequencing platforms, such as the Illumina HiSeq 2000, generate only short, ordered sequences, usually 100

There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry.

Using the tiny zebrafish, Danio rerio, Halpern explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord. The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim

The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH, director emeritus Donald Brown studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis from South Africa.

 Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH. The hormone