Baltimore, MD—Director Emeritus Donald Brown, of Carnegie’s Department of Embryology, receives the prestigious 2012 Lasker-Koshland Special Achievement Award in Medical Science “For exceptional...
Explore this Story
Baltimore, MD — The study of muscular system protein myostatin has been of great interest to researchers as a potential therapeutic target for people with muscular disorders. Although much is known...
Explore this Story
Baltimore, MD — In mammals, most lipids (such as fatty acids and cholesterol) are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make...
Explore this Story
Baltimore, MD — Insect glands are responsible for producing a host of secretions that allow bees to sting and ants to lay down trails to and from their nests. New research from Carnegie scientists...
Explore this Story
Baltimore, MD—Carnegie’s educational outreach program, BioEYES, will be the recipient of the 2012 Viktor Hamburger Outstanding Educator Prize from the Society for...
Explore this Story
January 28, 2010 Jenny Graves The Australian National University, Research School of Biological Sciences Comparisons between distantly related mammals and other vertebrates – including...
Explore this Story

Pages

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous...
Explore this Project
The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by...
Meet this Scientist
The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the...
Meet this Scientist
Steven Farber
In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and...
Meet this Scientist
You May Also Like...
Nutrition and metabolism are closely linked with reproductive health. Several reproductive disorders have been linked to malnutrition, diabetes, and obesity. Furthermore, fasting in numerous species...
Explore this Story
Baltimore, MD—Mammalian females ovulate periodically over their reproductive lifetimes, placing significant demands on their ovaries for egg production. Whether mammals generate new eggs in adulthood...
Explore this Story
Human activity endangers coral health around the world. A new algal threat is taking advantage of coral’s already precarious situation in the Caribbean and making it even harder for reef...
Explore this Story

Explore Carnegie Science

Palm trees rise in front of the San Gabriel Mountains.
January 10, 2022

Washington, DC—California Governor Gavin Newsom on Monday announced $20 million in his 2023 fiscal year budget to support Carnegie’s new research facility in Pasadena. The proposed budget allocation still must clear the California State Senate and Assembly, which will begin to hold hearings in the coming weeks. It must be adopted by June 15. 

The new 135,000-square-foot, state-of-the-art campus will bring the institution’s life and environmental scientists together in a single location adjacent to Caltech—making a decisive investment in the global fight against climate change. The facility will house more than 200 new hires and relocated staff, who

Margaret McFall-Ngai
November 17, 2021

Washington, DC—Pioneering microbiome specialist Margaret McFall-Ngai has been named the inaugural director of Carnegie’s newly launched research division focused on life and environmental sciences, which will deploy an integrated, molecular-to-global approach to tackling the challenges of sustainability, resilience, and adaptation to a changing climate. McFall-Ngai will join the institution in January, 2022, from the University of Hawai‘i at Mānoa, where she is a professor at the Pacific Biosciences Research Center’s Kewalo Marine Laboratory and the center’s director emerita.

“Margaret’s exemplary research and groundbreaking vision are the

Artist's conception of this research project courtesy of Navid Marvi
July 14, 2021

Baltimore, MD—Carnegie’s Steven Farber was awarded nearly $500,000 over three years by The G. Harold & Leila Y. Mathers Foundation to identify the chemical components of cinnamon oil that show effectiveness against cardiovascular disease-causing fats.

Fat molecules, or lipids, such as cholesterol and triglycerides are shuttled around the circulatory system by a protein called Apolipoprotein-B, together forming complexes of lipid and protein that are called lipoproteins but may be more commonly known as “bad cholesterol.” It can get embedded in the sides of blood vessels and harden, forming a dangerous buildup that makes it more difficult for the heart

Carnegie's William Ludington
July 14, 2021

Baltimore, MD—Carnegie William Ludington’s quest to understand the community ecology of our gut microbiome was this spring awarded nearly $1 million over three years from the National Science Foundation. He was also selected as one of 14 researchers to receive $55,000 from the Research Corporation for Science Advancement for its inaugural Scialog: Microbiome, Neurobiology, and Disease initiative.

“Since he arrived at Carnegie in 2018, Will has been aggressively pursuing breakthroughs in microbiome research—deploying a multitude of genetic, physiological, and mathematical approaches,” said Carnegie Embryology Director Yixian Zheng. “These two

No content in this section.

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments. 

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the musculoskeletal system to develop in the mammalian embryo. Skin, muscle, cartilage, and bone are all derived from a group of progenitor structures called somites. Various growth factors—molecules that stimulate the growth of cells—in the surrounding tissues work in concert to signal each somitic cell to differentiate into a specific tissue type.

The lab has identified various growth

Brittany Belin joined the Department of Embryology staff in August 2020. Her Ph.D. research involved developing new tools for in vivo imaging of actin in cell nuclei. Actin is a major structural element in eukaryotic cells—cells with a nucleus and organelles —forming contractile polymers that drive muscle contraction, the migration of immune cells to  infection sites, and the movement of signals from one part of a cell to another. Using the tools developed in her Ph.D., Belin discovered a new role for actin in aiding the repair of DNA breaks in human cells caused by carcinogens, UV light, and other mutagens.

Belin changed course for her postdoctoral work, in