Baltimore, MD—A first-of-its-kind study on almost 20,000 K-12 underrepresented public school students shows that Project BioEYES, based at Carnegie’s Department of Embryology, is effective at...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Baltimore, MD— New work led by Carnegie’s Steven Farber, with help from Yixian Zheng’s lab, sheds light on how form follows function for intestinal cells responding to high-fat foods that are rich in...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Baltimore, MD---Athletes, the elderly and those with degenerative muscle disease would all benefit from accelerated muscle repair. When skeletal muscles, those connected to the bone, are injured,...
Explore this Story
Washington, D.C.—  Zehra Nizami has been a graduate student and postdoc in Joe Gall’s lab at the Department of Embryology. She is the fourth recipient of the Postdoctoral Innovation and Excellence (...
Explore this Story
Baltimore, MD--BioEYES, the K-12 science education program headquartered at  Carnegie's Department of Embryology, was recognized with four other organizations by the General Motors Foundation, at the...
Explore this Story
Baltimore, MD— As we age, the function and regenerative abilities of skeletal muscles deteriorate, which means it is difficult for the elderly to recover from injury or surgery. New work from...
Explore this Story
Baltimore, MD—New work from Carnegie’s Allan Spradling and Lei Lei demonstrates that mammalian egg cells gain crucial cellular components at an early stage from their undifferentiated sister cells,...
Explore this Story
Washington, D.C.—Matthew Sieber, a postdoctoral fellow at the Department of Embryology, has been honored for his extraordinary accomplishments, through a new program that recognizes exceptional...
Explore this Story

Pages

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and...
Explore this Project
The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH,...
Meet this Scientist
There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and...
Meet this Scientist
Staff associate Christoph Lepper, with colleagues, overturned previous research that identified critical genes for making muscle stem cells. It turns out that the genes that make muscle stem cells in the embryo are surprisingly not needed in adult muscle stem cells to regenerate muscles after...
Meet this Scientist
You May Also Like...
The brain is the body’s mission control center, sending messages to the other organs about how to respond to various external and internal stimuli. Located in the forebrain, the habenular region is...
Explore this Story
Baltimore, MD—Carnegie’s educational outreach program, BioEYES, will be the recipient of the 2012 Viktor Hamburger Outstanding Educator Prize from the Society for Developmental Biology. BioEYES...
Explore this Story
Baltimore, MD —You may think you have dinner all to yourself, but you’re actually sharing it with a vast community of microbes waiting within your digestive tract. A new study from a team including...
Explore this Story

Explore Carnegie Science

May 7, 2018

Baltimore, MD—Allan C. Spradling, Director Emeritus of Carnegie’s Department of Embryology, has been awarded the 23rd March of Dimes and Richard B. Johnson, Jr., MD Prize in Developmental Biology as “an outstanding scientist who has profoundly advanced the science that underlies our understanding of prenatal development and pregnancy.”

Department director and Carnegie co-interim president Yixian Zheng remarked, “Allan is a legend in developmental biology. We are all delighted by this well- deserved recognition of Allan’s groundbreaking research.”

Spradling’s decades of scientific accomplishments cover a broad spectrum of advancements. Since the early 20th century, the fruit

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Neta Schwartz
November 27, 2017

Washington, DC—Not too long ago, biologists would induce mutations in an entire genome, isolate an organism that displayed a resulting disease or abnormality that they wanted to study, and then work backward to determine which gene was responsible for the defect.  This process often took years to yield definitive results.

Now, thanks to the CRISPR/Cas9 genome-editing tool, biologists can target specific genes for mutation and then see how this induced mutation manifests in an organism—tackling the problem from the other direction. But they are finding that the expected physical changes don’t always occur.

Why?

New work from Carnegie’s Steven Farber and Jennifer

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 13, 2017

Baltimore, MD— The brain is the body’s mission control center, sending messages to the other organs about how to respond to various external and internal stimuli. Located in the forebrain, the habenular region is one such message-conducting system. Two new papers from Carnegie scientists explain how the habenulae develop and their unsuspected role in recovering from fear.

Found in all vertebrates, the bilaterally paired habenulae regulate the transmission of dopamine and serotonin, two important chemicals related to motor control, mood, and learning.

Previous research has shown that the habenular system is involved in modulating sleep cycles, anxiety, and pain and reward

Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
July 6, 2017

Washington, D.C.--Yixian Zheng has been selected to direct Carnegie’s Department of Embryology in Baltimore, Maryland. She has been Acting Director since February 1st of 2016.

Carnegie president Matthew Scott remarked, “Yixian has been an exceptional leader of the department as Acting Director. We are extremely pleased that she took on this job permanently.  Her fascinating science, independent thinking, vision, extraordinary management skills, and perfect temperament are a tremendous asset to Carnegie Science.”

The Zheng lab has a long-standing interest in cell division and the cytoskeleton—the lattice arrangement of rods and fibers and motors that gives shape to cells and

No content in this section.

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood. 

The Lepper lab studies the mechanics of these processes. overturned previous research that identified critical genes for making muscle stem cells. It turns out that the genes that make muscle stem cells in the embryo are surprisingly not needed in adult muscle stem cells to regenerate muscles after injury. The finding challenges the current course of research into muscular dystrophy, muscle

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given the crucial role of the precursor cells to egg

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

Allan Spradling is a Howard Hughes Medical Institute Investigator and director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic cells—those that turn into non-reproductive tissues. Spradling uses the fruit fly Drosophila because the genes and processes studied are likely to be similar to those in other organisms including humans. In the 1980s he and his colleague, Gerald Rubin, showed how jumping genes could be used to identify and manipulate fruit fly genes. Their innovative technique helped establish Drosophila as

There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry.

Using the tiny zebrafish, Danio rerio, Halpern explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord. The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim

Yixian Zheng, director of the Department of Embryology, serves as co-interim president of Carnegie as of January 1, 2018. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use a wide range of tools, including genetics in different model organisms, cell culture, biochemistry, proteomics, and genomics.

Cell division is essential for all organisms to grow and live. During a specific time in a cell’s cycle the elongated apparatus consisting of string-like

Steven Farber

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Farber