Experimental zebrafish larvae, courtesy Navid Marvi.
Baltimore, MD—New work led by Carnegie’s Meredith Wilson and Steve Farber identifies a potential therapeutic target for clogged arteries and other health risks that stem from an excess of...
Explore this Story
Xenia in Carnegie's coral facility, courtesy Carnegie Embryology
Baltimore, MD— New work from a team of Carnegie cell, genomic, and developmental biologists solves a longstanding marine science mystery that could aid coral conservation. The researchers...
Explore this Story
Yixian Zheng
Baltimore, MD— Carnegie’s Director of Embryology Yixian Zheng is one of 15 scientists awarded a grant from the...
Explore this Story
Illustration courtesy of Navid Marvi and Andres Aranda-Diaz.
Baltimore, MD—Antibiotics can make easy work of infections. But how do they affect the complex ecosystems of friendly bacteria that make up our microbiome? “When a doctor prescribes...
Explore this Story
Bellymount allows researchers to peer into the live tissue of the fruit fly gut.
Baltimore, MD— They say a picture is worth 1,000 words. But what about a real-time window into the complexity of the gastrointestinal system?  A new research tool allowed biologists to...
Explore this Story
Fetal Oocyte Attrition prevention, courtesy Marla Tharp and Navid Marvi.
Baltimore, MD— A woman’s supply of eggs is finite, so it is crucial that the quality of their genetic material is ensured. New work from Carnegie’s Marla Tharp, Safia Malki, and...
Explore this Story
Patellar tendon 30 days after an injury courtesy of Tyler Harvey.
Baltimore, MD—The buildup of scar tissue makes recovery from torn rotator cuffs, jumper’s knee, and other tendon injuries a painful, challenging process, often leading to secondary tendon...
Explore this Story
Kamena Kostova, courtesy Navid Marvi, Carnegie Institution for Science
Baltimore, MD— Carnegie biologist Kamena Kostova has been selected for the...
Explore this Story

Pages

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB). Much of the work makes use of the giant...
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells...
Meet this Scientist
Brittany Belin joined the Department of Embryology staff in August 2020. Her Ph.D. research involved developing new tools for in vivo imaging of actin in cell nuclei. Actin is a major structural element in eukaryotic cells—cells with a nucleus and organelles —forming contractile...
Meet this Scientist
The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology...
Meet this Scientist
You May Also Like...
Baltimore, MD—The newest member of the staff at the Carnegie Department of Embryology, Junior Investigator Zhao Zhang, received the prestigious Larry Sandler Memorial Award at the 56th Annual...
Explore this Story
Baltimore, MD—Studying how our bodies metabolize lipids such as fatty acids, triglycerides, and cholesterol can teach us about cardiovascular disease, diabetes, and other health problems, as well as...
Explore this Story
Washington, D.C.—The Carnegie Institution for Science and the University of Massachusetts Medical School (UMMS) have been granted United States Patent 8,283,329, entitled, “Genetic inhibition of...
Explore this Story

Explore Carnegie Science

Margaret McFall-Ngai
November 17, 2021

Washington, DC—Pioneering microbiome specialist Margaret McFall-Ngai has been named the inaugural director of Carnegie’s newly launched research division focused on life and environmental sciences, which will deploy an integrated, molecular-to-global approach to tackling the challenges of sustainability, resilience, and adaptation to a changing climate. McFall-Ngai will join the institution in January, 2022, from the University of Hawai‘i at Mānoa, where she is a professor at the Pacific Biosciences Research Center’s Kewalo Marine Laboratory and the center’s director emerita.

“Margaret’s exemplary research and groundbreaking vision are the

Artist's conception of this research project courtesy of Navid Marvi
July 14, 2021

Baltimore, MD—Carnegie’s Steven Farber was awarded nearly $500,000 over three years by The G. Harold & Leila Y. Mathers Foundation to identify the chemical components of cinnamon oil that show effectiveness against cardiovascular disease-causing fats.

Fat molecules, or lipids, such as cholesterol and triglycerides are shuttled around the circulatory system by a protein called Apolipoprotein-B, together forming complexes of lipid and protein that are called lipoproteins but may be more commonly known as “bad cholesterol.” It can get embedded in the sides of blood vessels and harden, forming a dangerous buildup that makes it more difficult for the heart

Carnegie's William Ludington
July 14, 2021

Baltimore, MD—Carnegie William Ludington’s quest to understand the community ecology of our gut microbiome was this spring awarded nearly $1 million over three years from the National Science Foundation. He was also selected as one of 14 researchers to receive $55,000 from the Research Corporation for Science Advancement for its inaugural Scialog: Microbiome, Neurobiology, and Disease initiative.

“Since he arrived at Carnegie in 2018, Will has been aggressively pursuing breakthroughs in microbiome research—deploying a multitude of genetic, physiological, and mathematical approaches,” said Carnegie Embryology Director Yixian Zheng. “These two

Heart Reef in Australia's Great Barrier Reef, public domain.
December 21, 2020

Baltimore, MD— The CRISPR/Cas9 genome editing system can help scientists understand, and possibly improve, how corals respond to the environmental stresses of climate change. Work led by Phillip Cleves—who joined Carnegie’s Department of Embryology this fall—details how the revolutionary, Nobel Prize-winning technology can be deployed to guide conservation efforts for fragile reef ecosystems.

Cleves’ research team’s findings were recently published in two papers in the Proceedings of the National Academy of Sciences.

Corals are marine invertebrates that build extensive calcium carbonate skeletons from which reefs are constructed. But this

No content in this section.

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

Allan Spradling is a Howard Hughes Medical Institute Investigator and director emeritus of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic cells—those that turn into non-reproductive tissues. Spradling uses the fruit fly Drosophila because the genes and processes studied are likely to be similar to those in other organisms including humans. In the 1980s he and his colleague, Gerald Rubin, showed how jumping genes could be used to identify and manipulate fruit fly genes. Their innovative technique helped establish

The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH, director emeritus Donald Brown studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis from South Africa.

 Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Yixian Zheng is Director of the Department of Embryology. Her lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use a wide range of tools, including genetics in different model organisms, cell culture, biochemistry, proteomics, and genomics.

Cell division is essential for all organisms to grow and live. During a specific time in a cell’s cycle the elongated apparatus consisting of string-like micro-tubules called the spindle is assembled to