This image shows an example of defects in the development of the embryonic central nervous system in stored eggs that lacked the Fmr1 gene.
Baltimore, MD—New work from Carnegie’s Ethan Greenblatt and Allan Spradling reveals that the genetic factors underlying fragile X syndrome, and potentially other autism-related disorders, stem from...
Explore this Story
Baltimore MD—Almost half of our DNA sequences are made up of jumping genes—also known as transposons. They jump around the genome in developing sperm and egg cells and are important to evolution. But...
Explore this Story
Baltimore, MD—A tremendous amount of genetic material must be packed into the nucleus of every cell—a tiny compartment. One of the biggest challenges in biology is to understand how certain regions...
Explore this Story
Baltimore, MD—Allan C. Spradling, Director Emeritus of Carnegie’s Department of Embryology, has been awarded the 23rd March of Dimes and Richard B. Johnson, Jr., MD Prize in Developmental Biology as...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Neta Schwartz
Washington, DC—Not too long ago, biologists would induce mutations in an entire genome, isolate an organism that displayed a resulting disease or abnormality that they wanted to study, and then work...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Baltimore, MD— The brain is the body’s mission control center, sending messages to the other organs about how to respond to various external and internal stimuli. Located in the forebrain, the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Washington, D.C.--Yixian Zheng has been selected to direct Carnegie’s Department of Embryology in Baltimore, Maryland. She has been Acting Director since February 1st of 2016. Carnegie president...
Explore this Story
Washington, D.C.—BioEYES was accepted to participate in a National Science Foundation (NSF) video competition on May 15-22, 2017. BioEYES supporters are encouraged to go to the competition website at...
Explore this Story

Pages

Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood.  The...
Explore this Project
The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB). Much of the work makes use of the giant...
Explore this Project
The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH action, the Donald Brown lab studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a...
Explore this Project
Junior investigator Zhao Zhang joined Carnegie in November 2014. He studies how elements with the ability to “jump” around the genome, called transposons, are controlled in egg, sperm, and other somatic tissues in order to understand how transposons contribute to genomic instability and to...
Meet this Scientist
There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and...
Meet this Scientist
The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host...
Meet this Scientist
You May Also Like...
Baltimore, MD—Carnegie’s educational outreach program, BioEYES, will be the recipient of the 2012 Viktor Hamburger Outstanding Educator Prize from the Society for Developmental Biology. BioEYES...
Explore this Story
Baltimore, MD— The ability of embryonic stem cells to differentiate into different types of cells with different functions is regulated and maintained by a complex series of chemical interactions,...
Explore this Story
The American Society for Cell Biology profiles Yixian Zheng and her recent papers on the elusive spindle matrix. "Zheng’s lab identifies new regulators in spindle assembly, all associated with the...
Explore this Story

Explore Carnegie Science

This image shows an example of defects in the development of the embryonic central nervous system in stored eggs that lacked the Fmr1 gene.
August 15, 2018

Baltimore, MD—New work from Carnegie’s Ethan Greenblatt and Allan Spradling reveals that the genetic factors underlying fragile X syndrome, and potentially other autism-related disorders, stem from defects in the cell’s ability to create unusually large protein structures. Their findings are published in Science.

Their research focuses on a gene called Fmr1. Mutations in this gene create problems in the brain as well as the reproductive system. They can lead to the most-common form of inherited autism, fragile X syndrome, as well as to premature ovarian failure.

It was already thought that Fmr1 plays a pivotal part in the last stages of the process by which the recipe

July 26, 2018

Baltimore MD—Almost half of our DNA sequences are made up of jumping genes—also known as transposons. They jump around the genome in developing sperm and egg cells and are important to evolution. But their mobilization can also cause new mutations that lead to diseases, such as hemophilia and cancer. Remarkably little is known about when and where their movements occur in developing reproductive cells, the key process that ensures their propagation in future generations, but can lead to genetic disorders for the hosts.

To address this problem, a team* of Carnegie researchers developed new techniques to track the mobilization of jumping genes. They found that during a particular

June 28, 2018

Baltimore, MD—A tremendous amount of genetic material must be packed into the nucleus of every cell—a tiny compartment. One of the biggest challenges in biology is to understand how certain regions of this highly packaged DNA can be called upon, so that the genes encoded in them can be “turned on,” or expressed and used to manufacture RNA and proteins.

New work published in Molecular Cell by a team of biologists from Carnegie, Soonchunhyang University, and Johns Hopkins University has shed light on this process and their findings have implications for certain age-related diseases and organ decay.

The nucleus, where a cell’s DNA is housed, is surrounded by two membrane

May 7, 2018

Baltimore, MD—Allan C. Spradling, Director Emeritus of Carnegie’s Department of Embryology, has been awarded the 23rd March of Dimes and Richard B. Johnson, Jr., MD Prize in Developmental Biology as “an outstanding scientist who has profoundly advanced the science that underlies our understanding of prenatal development and pregnancy.”

Department director and Carnegie co-interim president Yixian Zheng remarked, “Allan is a legend in developmental biology. We are all delighted by this well- deserved recognition of Allan’s groundbreaking research.”

Spradling’s decades of scientific accomplishments cover a broad spectrum of advancements. Since the early 20th century, the fruit

No content in this section.

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Farber

The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg development, called oogenesis, which promises to provide insight into the rejuvenation of the nucleus and surrounding cytoplasm. By studying ovarian stem cells, they are learning how cells maintain an undifferentiated state and how cell production is regulated by microenvironments known as niches. They are  also re-investigating the role of steroid and prostaglandin hormones in controlling the

Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood. 

The Lepper lab studies the mechanics of these processes. overturned previous research that identified critical genes for making muscle stem cells. It turns out that the genes that make muscle stem cells in the embryo are surprisingly not needed in adult muscle stem cells to regenerate muscles after injury. The finding challenges the current course of research into muscular dystrophy, muscle

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

The Bortvin lab, with colleagues

Staff associate Christoph Lepper, with colleagues, overturned previous research that identified critical genes for making muscle stem cells. It turns out that the genes that make muscle stem cells in the embryo are surprisingly not needed in adult muscle stem cells to regenerate muscles after injury. The finding challenges the current course of research into muscular dystrophy, muscle injury, and regenerative medicine, which uses stem cells for healing tissues, and it favors using age-matched stem cells for therapy.

Previous studies showed that two genes Pax3 and Pax7, are essential for making the embryonic and neonatal muscle stem cells in the mouse. But Lepper and team for the

The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH, director emeritus Donald Brown studies one of the most dramatic roles of the hormone, the control of amphibian metamorphosis—the process by which a tadpole turns into a frog. He studies the frog Xenopus laevis from South Africa.

 Events as different as the formation of limbs, the remodeling of organs, and the resorption of tadpole tissues such as the tail are all directed by TH. The hormone

The Ludington lab investigates complex ecological dynamics from microbial community interactions using the fruit fly  Drosophila melanogaster. The fruit fly gut carries numerous microbial species, which can be cultured in the lab. The goal is to understand the gut ecology and how it relates to host health, among other questions, by taking advantage of the fast time-scale and ease of studying the fruit fly in controlled experiments.