Artist's conception by Navid Marvi
Baltimore, MD— The gut microbiome is an ecosystem of hundreds to thousands of microbial species living within the human body. These populations affect our health, fertility, and even our...
Explore this Story
Palm trees rise in front of the San Gabriel Mountains.
Washington, DC—California Governor Gavin Newsom on Monday announced $20 million in his 2023 fiscal year budget to support Carnegie’s new research facility in Pasadena. The proposed budget...
Explore this Story
Margaret McFall-Ngai
Washington, DC—Pioneering microbiome specialist Margaret McFall-Ngai has been named the inaugural director of Carnegie’s newly launched research division focused on life and environmental...
Explore this Story
Artist's conception of this research project courtesy of Navid Marvi
Baltimore, MD—Carnegie’s Steven Farber was awarded nearly $500,000 over three years by The G. Harold & Leila Y. Mathers Foundation to identify the chemical components of cinnamon oil...
Explore this Story
Carnegie's William Ludington
Baltimore, MD—Carnegie William Ludington’s quest to understand the community ecology of our gut microbiome was this spring awarded nearly $1 million over three years from the National...
Explore this Story
Heart Reef in Australia's Great Barrier Reef, public domain.
Baltimore, MD— The CRISPR/Cas9 genome editing system can help scientists understand, and possibly improve, how corals respond to the environmental stresses of climate change. Work led by...
Explore this Story
Orange peyssonnelid algal crusts courtesy of Peter Edmunds.
Baltimore, MD—Human activity endangers coral health around the world. A new algal threat is taking advantage of coral’s already precarious situation in the Caribbean and making it even...
Explore this Story
Baltimore, MD— Recently published work from Carnegie’s Allan Spradling and Wanbao Niu revealed in unprecedented detail the genetic instructions immature egg cells go through step by step...
Explore this Story

Pages

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous...
Explore this Project
The Spradling laboratory studies the biology of reproduction. By unknown means eggs reset the normally irreversible processes of differentiation and aging. The fruit fly Drosophila provides a favorable multicellular system for molecular genetic studies. The lab focuses on several aspects of egg...
Explore this Project
The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB). Much of the work makes use of the giant...
Explore this Project
Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by...
Meet this Scientist
Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question...
Meet this Scientist
The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH,...
Meet this Scientist
You May Also Like...
Nutrition and metabolism are closely linked with reproductive health. Several reproductive disorders have been linked to malnutrition, diabetes, and obesity. Furthermore, fasting in numerous species...
Explore this Story
Pioneering microbiome specialist Margaret McFall-Ngai has been named the inaugural director of Carnegie’s newly launched research division focused on life and environmental sciences, which will...
Explore this Story
Tuesday, November 25, 2014, Baltimore, MD—Biologist Marnie Halpern of Carnegie’s Department of Embryology has been named a Fellow of the American Association for the Advancement of Science (AAAS) for...
Explore this Story

Explore Carnegie Science

Artist's conception by Navid Marvi
February 9, 2022

Baltimore, MD— The gut microbiome is an ecosystem of hundreds to thousands of microbial species living within the human body. These populations affect our health, fertility, and even our longevity. But how do they get there in the first place?

New collaborative work led by Carnegie’s William Ludington reveals crucial details about how the bacterial communities that comprise each of our individual gut microbiomes are acquired. These findings, published in the Proceedings of the National Academy of Sciences, have major implications for treatments such as fecal transplants and probiotic administration.

“There is a huge amount of variation in microbiome

Palm trees rise in front of the San Gabriel Mountains.
January 10, 2022

Washington, DC—California Governor Gavin Newsom on Monday announced $20 million in his 2023 fiscal year budget to support Carnegie’s new research facility in Pasadena. The proposed budget allocation still must clear the California State Senate and Assembly, which will begin to hold hearings in the coming weeks. It must be adopted by June 15. 

The new 135,000-square-foot, state-of-the-art campus will bring the institution’s life and environmental scientists together in a single location adjacent to Caltech—making a decisive investment in the global fight against climate change. The facility will house more than 200 new hires and relocated staff, who

Margaret McFall-Ngai
November 17, 2021

Washington, DC—Pioneering microbiome specialist Margaret McFall-Ngai has been named the inaugural director of Carnegie’s newly launched research division focused on life and environmental sciences, which will deploy an integrated, molecular-to-global approach to tackling the challenges of sustainability, resilience, and adaptation to a changing climate. McFall-Ngai will join the institution in January, 2022, from the University of Hawai‘i at Mānoa, where she is a professor at the Pacific Biosciences Research Center’s Kewalo Marine Laboratory and the center’s director emerita.

“Margaret’s exemplary research and groundbreaking vision are the

Artist's conception of this research project courtesy of Navid Marvi
July 14, 2021

Baltimore, MD—Carnegie’s Steven Farber was awarded nearly $500,000 over three years by The G. Harold & Leila Y. Mathers Foundation to identify the chemical components of cinnamon oil that show effectiveness against cardiovascular disease-causing fats.

Fat molecules, or lipids, such as cholesterol and triglycerides are shuttled around the circulatory system by a protein called Apolipoprotein-B, together forming complexes of lipid and protein that are called lipoproteins but may be more commonly known as “bad cholesterol.” It can get embedded in the sides of blood vessels and harden, forming a dangerous buildup that makes it more difficult for the heart

No content in this section.

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

The Zheng lab studies cell division including the study of stem cells, genome organization, and lineage specification. They study the mechanism of genome organization in development, homeostasis—metabolic balance-- and aging; and the influence of cell morphogenesis, or cell shape and steructure,  on cell fate decisions. They use a wide range of tools and systems, including genetics in model organisms, cell culture, biochemistry, proteomics, and genomics.

 

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

Brittany Belin joined the Department of Embryology staff in August 2020. Her Ph.D. research involved developing new tools for in vivo imaging of actin in cell nuclei. Actin is a major structural element in eukaryotic cells—cells with a nucleus and organelles —forming contractile polymers that drive muscle contraction, the migration of immune cells to  infection sites, and the movement of signals from one part of a cell to another. Using the tools developed in her Ph.D., Belin discovered a new role for actin in aiding the repair of DNA breaks in human cells caused by carcinogens, UV light, and other mutagens.

Belin changed course for her postdoctoral work, in

Staff Associate Kamena Kostova joined the Department of Embryology in November 2018. She studies ribosomes, the factory-like structures inside cells that produce proteins. Scientists have known about ribosome structure, function, and biogenesis for some time. But, a major unanswered question is how cells monitor the integrity of the ribosome itself. Problems with ribosomes have been associated with diseases including neurodegeneration and cancer. The Kostova lab investigates the fundamental question of how cells respond when their ribosomes break down using mass spectrometry, functional genomics methods, and CRISPR genome editing.

Kostova received a B.S. in Biology from the

Phillip Cleves’ Ph.D. research was on determining the genetic changes that drive morphological evolution. He used the emerging model organism, the stickleback fish, to map genetic changes that control skeletal evolution. Using new genetic mapping and reverse genetic tools developed during his Ph.D., Cleves identified regulatory changes in a protein called bone morphogenetic protein 6 that were responsible for an evolved increase in tooth number in stickleback. This work illustrated how molecular changes can generate morphological novelty in vertebrates.

Cleves returned to his passion for coral research in his postdoctoral work in John Pringles’ lab at Stanford