Artist's conception. Credit Rensselaer Polytechnic Institute
Washington, DC—Carnegie’s Andrew Steele is a member of the Earth First Origins project, led by Rensselaer Polytechnic Institute’s Karyn Rogers, which has been awarded a $9 million...
Explore this Story
Self-portrait of NASA's Curiosity Mars rover on Vera Rubin Ridge with Mount Sharp poking up just behind the vehicle's mast. Image is courtesy of NASA/JPL-Caltech/MSSS Curiosity.
Washington, DC—The density of rock layers on the terrain that climbs from the base of Mars’ Gale Crater to Mount Sharp is less dense than expected, according to the latest report on the...
Explore this Story
Artist concept of 2018 VG18, nicknamed "Farout.” Illustration by Roberto Molar Candanosa is courtesy of the Carnegie Institution for Science.
Washington, DC— A team of astronomers has discovered the most-distant body ever observed in our Solar System.  It is the first known Solar System object that has been detected at a...
Explore this Story
Artist’s impression of Barnard’s Star planet under the orange tinted light from the star.  Credit: IEEC/Science-Wave - Guillem Ramisa
Washington, DC—An international team including five Carnegie astronomers has discovered a frozen Super-Earth orbiting Barnard’s star, the closest single star to our own Sun. The...
Explore this Story
Mars mosaic courtesy of NASA
Washington, DC—Mars’ organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian...
Explore this Story
NASEM astrobiology briefing artwork
Washington, DC—NASA should incorporate astrobiology into all stages of future exploratory missions, according to a...
Explore this Story
Sarah Stewart was awarded a prestigious MacArthur fellowship for: “Advancing new theories of how celestial collisions give birth to planets and their natural satellites, such as the Earth...
Explore this Story
Washington, DC—Carnegie’s Scott Sheppard and his colleagues—Northern Arizona University’s Chad Trujillo,...
Explore this Story

Pages

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet...
Explore this Project
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this...
Meet this Scientist
Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics...
Meet this Scientist
You May Also Like...
Saturn’s icy moon Enceladus is of great interest to scientists due to its subsurface ocean, making it a prime target for those searching for life elsewhere. New research led by Carnegie’s...
Explore this Story
New work from an international team of astronomers including Carnegie’s Jaehan Bae used archival radio telescope data to develop a new method for finding very young extrasolar planets. Of...
Explore this Story
When planets first begin to form, the aftermath of the process leaves a ring of rocky and icy material that’s rotating and colliding around the young central star like a celestial roller derby...
Explore this Story

Explore Carnegie Science

GW Orionis Credit: ESO/Exeter/Kraus et al., ALMA (ESO/NAOJ/NRAO)
September 3, 2020

Washington, DC— The discovery that our galaxy is teeming with exoplanets has also revealed the vast diversity of planetary systems out there and raised questions about the processes that shaped them. New work published in Science by an international team including Carnegie’s Jaehan Bae could explain the architecture of multi-star systems in which planets are separated by wide gaps and do not orbit on the same plane as their host star’s equatorial center.

“In our Solar System, the eight planets and many other minor objects orbit in a flat plane around the Sun; but in some distant systems, planets orbit on an incline—sometimes a very steep one,”

Earth's layers courtesy of Shutterstock
August 31, 2020

Washington, DC— The composition of Earth’s mantle was more shaped by interactions with the oceanic crust than previously thought, according to work from Carnegie’s Jonathan Tucker and Peter van Keken along with colleagues from Oxford that was recently published in Geochemistry, Geophysics, Geosystems.

During its evolution, our planet separated into distinct layers—core, mantle, and crust. Each has its own composition and the dynamic processes through which these layers interact with their neighbors can teach us about Earth’s geologic history.

Plate tectonic processes allow for continuous evolution of the crust and play a key role in our planet

Quartz crystals courtesy of Shutterstock.
August 26, 2020

Washington, DC— When a meteorite hurtles through the atmosphere and crashes to Earth, how does its violent impact alter the minerals found at the landing site? What can the short-lived chemical phases created by these extreme impacts teach scientists about the minerals existing at the high-temperature and pressure conditions found deep inside the planet?

New work led by Carnegie’s Sally June Tracy examined the crystal structure of the silica mineral quartz under shock compression and is challenging longstanding assumptions about how this ubiquitous material behaves under such intense conditions. The results are published in Science Advances.

"Quartz is one

Johanna Teske
August 19, 2020

Washington, DC— In September, astronomer Johanna Teske will join Carnegie’s Earth and Planets Laboratory as a Staff Scientist. Teske has been with Carnegie since 2014, first as the inaugural Carnegie Origins Postdoctoral Fellow and currently as a NASA Hubble Fellow. 

“I’m thrilled to be able to continue my career at Carnegie and to be the first Staff Scientist hired at the newly formed EPL,” Teske said. “This institution has shaped my approach to research and I am excited to advance to the next stage of my career as one of its faculty.”   

Teske’s work aims to help scientists better understand the

No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 - 2003, CAN 3 from 2003 - 2008, and CAN 5 from 2009 - 2015. The Carnegie team focused on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich primitive planetary bodies, prebiotic molecular synthesis through catalyzing with

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that measure tiny strains the Earth undergoes.

Strainmeter data has led to the discovery of events referred to as slow earthquakes that are similar to regular earthquakes except that the fault motions take place over much longer time scales. These were first detected in south-east Japan and have since been seen in a number of different environments including the San Andreas Fault in California and

Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics of the area and shape of the Earth--to identify, model and interpret this ground deformation.

She uses data from radar called Interferometric Synthetic Aperture Radar (InSAR), and data from the Global Positioning System (GPS) to characterize ground motion during volcanic unrest. She also collects gravity data, which indicate changes in mass and/or density underground. These data sets,

What sets George Cody apart from other geochemists is his pioneering use of sophisticated techniques such as enormous facilities for synchrotron radiation, and sample analysis with nuclear magnetic resonance (NMR) spectroscopy to characterize hydrocarbons. Today, Cody  applies these techniques to analyzing the organic processes that alter sediments as they mature into rock inside the Earth and the molecular structure of extraterrestrial organics.

Wondering about where we came from has occupied the human imagination since the dawn of consciousness. Using samples from comets and meteorites, George Cody tracks the element carbon as it moves from the interstellar medium, through

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive