Artist's conception of Farfarout. Credit: NOIRLab/NSF/AURA/J. da Silva.
Washington, DC—A team of astronomers, including Carnegie’s Scott Sheppard, David Tholen from the University of Hawaiʻi Institute for Astronomy, and Chad Trujillo from Northern Arizona...
Explore this Story
Illustration of lab-mimicry of exoplanet interiors by Carnegie's Katherine Cain/
Washington, DC— New research led by Carnegie’s Yingwei Fei provides a framework for understanding the interiors of super-Earths—rocky exoplanets between 1.5 and 2 times the size of...
Explore this Story
Rough diamond photograph purchased from iStock
Washington, DC— A diamond lasts forever, but that doesn’t mean all diamonds have a common history.  Some diamonds were formed billions of years ago in space as the carbon-rich...
Explore this Story
Islands of Four Mountains, Alaska. USGS Photo by John Lyons.
Washington, DC— A small group of volcanic islands in Alaska's Aleutian chain could actually be part of a single, previously unrecognized giant volcano in the same category as Yellowstone,...
Explore this Story
Richard Carlson, Director Carnegie Earth and Planets Laboratory
Washington, DC— Richard Carlson, Director of Carnegie’s Earth and Planets Laboratory, has been named a Fellow of the American Association for the Advancement of Science. He was selected...
Explore this Story
Saturn image is courtesy of NASA/JPL-Caltech/Space Science Institute.
Washington, DC—New work led by Carnegie’s Matt Clement reveals the likely original locations of Saturn and Jupiter. These findings refine our understanding of the forces that determined...
Explore this Story
GW Orionis Credit: ESO/Exeter/Kraus et al., ALMA (ESO/NAOJ/NRAO)
Washington, DC— The discovery that our galaxy is teeming with exoplanets has also revealed the vast diversity of planetary systems out there and raised questions about the processes that shaped...
Explore this Story
Earth's layers courtesy of Shutterstock
Washington, DC— The composition of Earth’s mantle was more shaped by interactions with the oceanic crust than previously thought, according to work from Carnegie’s Jonathan Tucker...
Explore this Story

Pages

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique...
Explore this Project
Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new...
Meet this Scientist
You May Also Like...
The ancient lunar surface once erupted with geysers of lava — and now, a team of scientists including Carnegie's Erik Hauri think they know what caused those fiery fountains. More
Explore this Story
A team of Carnegie scientists has discovered three giant planets in a binary star system composed of stellar ''twins'' that are also effectively siblings of our Sun. One star hosts...
Explore this Story
A small group of volcanic islands in Alaska's Aleutian chain could actually be part of a single, previously unrecognized giant volcano in the same category as Yellowstone, according to work from...
Explore this Story

Explore Carnegie Science

Artist's conception of Farfarout. Credit: NOIRLab/NSF/AURA/J. da Silva.
February 10, 2021

Washington, DC—A team of astronomers, including Carnegie’s Scott Sheppard, David Tholen from the University of Hawaiʻi Institute for Astronomy, and Chad Trujillo from Northern Arizona University have discovered discovered the most distant object ever observed in our Solar System.

Officially called 2018 AG37, the object is nicknamed Farfarout for just how far away from the Sun it is orbiting—about 132 AU, where 1 AU is the distance between the Earth and Sun. At that distance, it takes an entire millennium to orbit the Sun.

The three colleagues have been surveying the sky since 2012 to map the Solar System beyond Pluto. FarFarOut joins a set of these

Illustration of lab-mimicry of exoplanet interiors by Carnegie's Katherine Cain/
February 9, 2021

Washington, DC— New research led by Carnegie’s Yingwei Fei provides a framework for understanding the interiors of super-Earths—rocky exoplanets between 1.5 and 2 times the size of our home planet—which is a prerequisite to assess their potential for habitability.  Planets of this size are among the most abundant in exoplanetary systems.  The paper is published in Nature Communications.

“Although observations of an exoplanet’s atmospheric composition will be the first way to search for signatures of life beyond Earth, many aspects of a planet’s surface habitability are influenced by what’s happening beneath the planet

Rough diamond photograph purchased from iStock
December 21, 2020

Washington, DC— A diamond lasts forever, but that doesn’t mean all diamonds have a common history. 

Some diamonds were formed billions of years ago in space as the carbon-rich atmospheres of dying stars expanded and cooled. In our own planet’s lifetime, high-temperatures and pressures in the mantle produced the diamonds that are familiar to us as gems. 5,000 years ago, a large meteorite that struck a carbon-rich sediment on Earth produced an impact diamond.

Each of these diamonds differs from the others in both composition and genesis, but all are categorized as “diamond” by the authoritative guide to minerals—the International

Islands of Four Mountains, Alaska. USGS Photo by John Lyons.
December 3, 2020

Washington, DC— A small group of volcanic islands in Alaska's Aleutian chain could actually be part of a single, previously unrecognized giant volcano in the same category as Yellowstone, according to work from a research team, including Carnegie’s Diana Roman, Lara Wagner, Hélène Le Mével, and Daniel Portner, as well as recently departed postdoc Helen Janiszewski (now at University of Hawaiʻi at Mānoa), who will present their findings at the American Geophysical Union’s Fall Meeting next week.

The Islands of the Four Mountains in the central Aleutians is a tight group of six volcanos: Carlisle, Cleveland, Herbert, Kagamil, Tana and

No content in this section.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 - 2003, CAN 3 from 2003 - 2008, and CAN 5 from 2009 - 2015. The Carnegie team focused on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich primitive planetary bodies, prebiotic molecular synthesis through catalyzing with

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is in developing protocols, instrumentation, and procedures for life detection in samples from the early Earth and elsewhere in the Solar System.

Steele has developed several instrument and mission concepts for future Mars missions and became involved in the 2011 Mars Science Laboratory mission as a member of the Sample Analysis at Mars (SAM) team. For  a number of years he journeyed to

Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this data from continental areas of the planet that have not been studied before to better understand the elastic properties of Earth’s crust and upper mantle, the rigid region called the lithosphere.

By its nature seismology is indirect research and has limitations for interpreting features like temperature, melting, and exact composition. So Wagner looks at the bigger picture. She

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-