Not only did our early Solar System potentially consist of five or even six giant worlds, but there may have been a large number of inner, terrestrial planets that were ejected back in the Solar...
Explore this Story
“I think there are definitely things out there bigger than Pluto that are yet to be discovered,” Scott Sheppard talks to The Washington Post about the possibility of an undiscovered outer Solar...
Explore this Story
New work from a team including Carnegie’s Christopher Glein has revealed the pH of water spewing from a geyser-like plume on Saturn’s moon Enceladus. Their findings are an important step toward...
Explore this Story
Washington, DC—New research from a team led by Carnegie’s Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and...
Explore this Story
New research from a team led by Carnegie’s Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be...
Explore this Story
The ancient lunar surface once erupted with geysers of lava — and now, a team of scientists including Carnegie's Erik Hauri think they know what caused those fiery fountains....
Explore this Story
Washington, DC— Tiny beads of volcanic glass found on the lunar surface during the Apollo missions are a sign that fire fountain eruptions took place on the Moon’s surface. Now, scientists from Brown...
Explore this Story
Daily Mail: A shockwave from a catastrophic supernova explosion may have triggered the birth of our Solar System when it crashed into a cloud of gas. Scientists studying this process, Carnegie's Alan...
Explore this Story


Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain...
Explore this Project
Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.” ...
Explore this Project
Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of...
Explore this Project
Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature...
Meet this Scientist
Cosmochemist Larry Nittler studies extraterrestrial materials, including meteorites and interplanetary dust particles (IDPs), to understand the formation of the Solar System, the galaxy, and the universe and to identify the materials involved. He is particularly interested in developing new...
Meet this Scientist
Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is...
Meet this Scientist
You May Also Like...
Washington, D.C.—Using revolutionary new techniques, a team led by Carnegie’s Malcolm Guthrie has made a striking discovery about how ice behaves under pressure, changing ideas that date back almost...
Explore this Story
Rock samples from northeastern Canada retain chemical signals that help explain what Earth’s crust was like more than 4 billion years ago, reveals new work from Carnegie’s Richard Carlson and...
Explore this Story
Washington, D.C.—Breaking research news from a team of scientists led by Carnegie’s Ho-kwang “Dave” Mao reveals that the composition of the Earth’s lower mantle may be significantly different than...
Explore this Story

Explore Carnegie Science

NASEM astrobiology briefing artwork
October 10, 2018

Washington, DC—NASA should incorporate astrobiology into all stages of future exploratory missions, according to a new report from the National Academies of Sciences, Engineering, and Medicine presented Wednesday by the chair of the study, University of Toronto’s Barbara Sherwood Lollar, and by Carnegie’s Alan Boss, one of the report’s 17 expert authors.

Astrobiology addresses the factors that allowed life to originate and develop in the universe and investigates whether life exists on planets other than Earth. This highly interdisciplinary and constantly adapting field incorporates expertise in biology, chemistry, geology, planetary science, and physics. According to the report’s

October 4, 2018

Sarah Stewart was awarded a prestigious MacArthur fellowship for: “Advancing new theories of how celestial collisions give birth to planets and their natural satellites, such as the Earth and Moon.”

Stewart is currently a professor in the Department of Earth and Planetary Sciences at the University of California Davis. Her group studies the formation and evolution of planetary bodies by using shock wave experiments to measure the properties of materials and conducting simulations of planetary processes. She was a Carnegie postdoctoral fellow from 2002 to 2003. For more see

October 2, 2018

Washington, DC—Carnegie’s Scott Sheppard and his colleagues—Northern Arizona University’s Chad Trujillo, and the University of Hawaii’s David Tholen—are once again redefining our Solar System’s edge. They discovered a new extremely distant object far beyond Pluto with an orbit that supports the presence of an even-farther-out, Super-Earth or larger Planet X.

The newly found object, called 2015 TG387, was announced Tuesday by the International Astronomical Union’s Minor Planet Center.  A paper with the full details of the discovery has also been submitted to The Astronomical Journal.

2015 TG387 was discovered about 80 astronomical units (AU) from the Sun, a measurement

Erik Hauri in the lab at Carnegie's Department of Terrestrial Magnetism
September 6, 2018

Washington, DC—Carnegie geochemist Erik Hauri, whose work upended our understanding of the Moon’s formation and the importance of water in Earth’s interior, died Wednesday in North Potomac, MD, following a battle with cancer. He was 52.

Hauri joined Carnegie as a staff scientist in 1994 and spent nearly 25 years investigating the geochemistry of the Earth, Moon, and other celestial objects.  Hauri had a particular interest in water, which he called the most-important molecule in our Solar System, saying that understanding where it came from and how it got distributed among the planets and various other bodies would unlock the secrets of how our Solar System evolved.

No content in this section.

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist. Image

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines, forging a

The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission to orbit Mercury following three flybys of that planet is a scientific investigation of the planet Mercury. Understanding Mercury, and the forces that have shaped it is fundamental to understanding the terrestrial planets and their evolution. This is the first orbital mission around the innermost planet. It took years of planning and complex trajectory to reach Mercury. Carnegie scientists have led the way revealing results that have redefined what we thought we knew about Mercury and the other rocky planets. For more information see

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de facto

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical fingerprints of

Volcanologist Diana Roman is interested in the mechanics of how magma moves through the Earth’s crust, and in the structure, evolution, and dynamics of volcanic conduit systems. Her ultimate goal is to understand the likelihood and timing of volcanic eruptions.

Most of Roman’s research focuses on understanding changes in seismicity and stress in response to the migration of magma through volcanic conduits, and on developing techniques and strategies for monitoring active or restless volcanoes through the analysis of high-frequency volcanic seismicity.

Roman is also interested in understanding the seismicity at quiet volcanoes, tectonic and hidden volcanic microearthquake

Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies.

The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium, iron, calcium, aluminum, titanium, sodium and sometimes water are distributed, and how they behave when melting occurs and  when magmas are generated and transported to the surface in volcanoes.

The presence of water, carbon and other so-called volatiles have a large influence on the strength and melting point of planetary interiors. This in turn determines where magmas are