Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA/JPL-Caltech
Washington, DC— New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Alan Boss
Washington, DC— According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, RRUFF
Washington, DC—Applying big data analysis to mineralogy offers a way to predict minerals missing from those known to science, as well as where to find new deposits, according to a...
Explore this Story
Several of our geochemistry, cosmochemistry, and astrobiology experts at Carnegie's Department of Terrestrial Magnetism and Geophysical Laboratory study the Moon—how it formed and the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Diana Roman’s job sounds like a blast. Pun very much intended. Although many people find volcanoes scary, she knows how to make them fun and, more importantly, fascinating. A staff scientist...
Explore this Story
Washington, DC— Sometimes a brown dwarf is actually a planet—or planet-like anyway. A team led by Carnegie’s Jonathan Gagné, and including researchers from the Institute for...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—Rock samples from northeastern Canada retain chemical signals that help explain what Earth’s crust was like more than 4 billion years ago, reveals new work from Carnegie...
Explore this Story
Washington, DC—When planets first begin to form, the aftermath of the process leaves a ring of rocky and icy material that’s rotating and colliding around the young central star like a...
Explore this Story


Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of...
Explore this Project
Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics...
Meet this Scientist
Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates...
Meet this Scientist
Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is...
Meet this Scientist
You May Also Like...
Washington, DC— New work from Carnegie's Alan Boss and Sandra Keiser provides surprising new details about the trigger that may have started the earliest phases of planet formation in our solar...
Explore this Story
Washington, D.C.—Sean Solomon, director of Carnegie’s Department of Terrestrial Magnetism from 1992 until 2012 will receive the nation’s highest scientific award, the National Medal of Science at a...
Explore this Story
Washington, DC— An international team of astronomers released the largest-ever compilation of exoplanet-detecting observations made using a technique called the radial velocity method. They...
Explore this Story

Explore Carnegie Science

Artist's conception. Credit Rensselaer Polytechnic Institute
February 14, 2019

Washington, DC—Carnegie’s Andrew Steele is a member of the Earth First Origins project, led by Rensselaer Polytechnic Institute’s Karyn Rogers, which has been awarded a $9 million grant by NASA’s Astrobiology Program.

The five-year project seeks to uncover the conditions on early Earth that gave rise to life by identifying, replicating, and exploring how prebiotic molecules and chemical pathways could have formed under realistic early Earth conditions.

The evolution of planet Earth and the emergence of life during its first half-billion years are inextricably linked, with a series of planetwide transformations – formation of the ocean,

Self-portrait of NASA's Curiosity Mars rover on Vera Rubin Ridge with Mount Sharp poking up just behind the vehicle's mast. Image is courtesy of NASA/JPL-Caltech/MSSS Curiosity.
January 31, 2019

Washington, DC—The density of rock layers on the terrain that climbs from the base of Mars’ Gale Crater to Mount Sharp is less dense than expected, according to the latest report on the Red Planet’s geology from a team of scientists including Carnegie’s Shaunna Morrison. Their work is published in Science.

Scientists still aren't sure how this mountain grew inside of the crater, which has been a longstanding mystery. 

One idea is that sediment once filled Gale Crater and was then worn away by millions of years of wind and erosion, excavating the mountain. However, if the crater had been filled to the brim, the material on the bottom, which

Artist concept of 2018 VG18, nicknamed "Farout.” Illustration by Roberto Molar Candanosa is courtesy of the Carnegie Institution for Science.
December 17, 2018

Washington, DC— A team of astronomers has discovered the most-distant body ever observed in our Solar System.  It is the first known Solar System object that has been detected at a distance that is more than 100 times farther than Earth is from the Sun.

The new object was announced on Monday, December 17, 2018, by the International Astronomical Union’s Minor Planet Center and has been given the provisional designation 2018 VG18. The discovery was made by Carnegie’s Scott S. Sheppard, the University of Hawaii’s David Tholen, and Northern Arizona University’s Chad Trujillo.

2018 VG18, nicknamed “Farout” by the discovery team for

Artist’s impression of Barnard’s Star planet under the orange tinted light from the star.  Credit: IEEC/Science-Wave - Guillem Ramisa
November 14, 2018

Washington, DC—An international team including five Carnegie astronomers has discovered a frozen Super-Earth orbiting Barnard’s star, the closest single star to our own Sun. The Planet Finder Spectrograph on Carnegie’s Magellan II telescope was integral to the discovery, which is published in Nature.

Just six light-years from Earth, Barnard’s star is our fourth-closest neighboring star overall, after Alpha Centauri’s triple-star system. It is smaller and older than our Sun and among the least-active known red dwarfs.

To find this cold Super-Earth, the team—which included Carnegie’s Paul Butler, Johanna Teske, Jeff Crane, Steve

No content in this section.

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de

Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies.

The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium, iron, calcium, aluminum, titanium, sodium and sometimes water are distributed, and how they behave when melting occurs and  when magmas are generated and transported to the surface in volcanoes.

The presence of water, carbon and other so-called volatiles have a large influence on the strength and melting point of planetary interiors. This in turn determines where magmas are

Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental crust.

  Most all of the chemical diversity in the universe comes from the nuclear reactions inside stars, in a process called nucleosynthesis. To answer his questions, Carlson developes novel procedures using instruments called mass spectrometers to make precise measurements of isotopes--atoms of an element with different numbers of neutrons--of Chromium (Cr), strontium (Sr),

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-