Carnegie Science, Carnegie Institution, Carnegie Institution for Science, courtesy of NASA/JPL, slightly modified by Jonathan Gagné.
Washington, DC— Brown dwarfs, the larger cousins of giant planets, undergo atmospheric changes from cloudy to cloudless as they age and cool. A team of astronomers led by Carnegie’s...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Smithsonian Institution, Colin Jackson
Washington, DC— Plumes of hot rock surging upward from the Earth’s mantle at volcanic hotspots contain evidence that the Earth’s formative years may have been even more chaotic than...
Explore this Story
Many people have heard of Pangaea, the supercontinent that included all continents on Earth and began to break up about 175 million years ago. But before Pangaea, Earth’s landmasses ripped...
Explore this Story
Postdoctoral researcher at the Department of Terrestrial Magnetism (DTM), Miki Nakajima, has been awarded the eighth Postdoctoral Innovation and Excellence Award (PIE). These prizes are made through...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA/JPL-Caltech
Washington, DC— New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Alan Boss
Washington, DC— According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, RRUFF
Washington, DC—Applying big data analysis to mineralogy offers a way to predict minerals missing from those known to science, as well as where to find new deposits, according to a...
Explore this Story
Several of our geochemistry, cosmochemistry, and astrobiology experts at Carnegie's Department of Terrestrial Magnetism and Geophysical Laboratory study the Moon—how it formed and the...
Explore this Story


High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the...
Explore this Project
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
You May Also Like...
Washington, D.C. — In order to understand Earth's earliest history--its formation from Solar System material into the present-day layering of metal core and mantle, and crust--scientists look to...
Explore this Story
Washington, DC—The interiors of several of our Solar System’s planets and moons are icy, and ice has been found on distant extrasolar planets, as well.  But these bodies aren’t filled with the...
Explore this Story
Washington, DC— The matter that makes up distant planets and even-more-distant stars exists under extreme pressure and temperature conditions. This matter includes members of a family of seven...
Explore this Story

Explore Carnegie Science

Rough diamond photograph purchased from iStock
December 21, 2020

Washington, DC— A diamond lasts forever, but that doesn’t mean all diamonds have a common history. 

Some diamonds were formed billions of years ago in space as the carbon-rich atmospheres of dying stars expanded and cooled. In our own planet’s lifetime, high-temperatures and pressures in the mantle produced the diamonds that are familiar to us as gems. 5,000 years ago, a large meteorite that struck a carbon-rich sediment on Earth produced an impact diamond.

Each of these diamonds differs from the others in both composition and genesis, but all are categorized as “diamond” by the authoritative guide to minerals—the International

Islands of Four Mountains, Alaska. USGS Photo by John Lyons.
December 3, 2020

Washington, DC— A small group of volcanic islands in Alaska's Aleutian chain could actually be part of a single, previously unrecognized giant volcano in the same category as Yellowstone, according to work from a research team, including Carnegie’s Diana Roman, Lara Wagner, Hélène Le Mével, and Daniel Portner, as well as recently departed postdoc Helen Janiszewski (now at University of Hawaiʻi at Mānoa), who will present their findings at the American Geophysical Union’s Fall Meeting next week.

The Islands of the Four Mountains in the central Aleutians is a tight group of six volcanos: Carlisle, Cleveland, Herbert, Kagamil, Tana and

Richard Carlson, Director Carnegie Earth and Planets Laboratory
November 24, 2020

Washington, DC— Richard Carlson, Director of Carnegie’s Earth and Planets Laboratory, has been named a Fellow of the American Association for the Advancement of Science. He was selected for his “outstanding research, leadership, innovation, and service to the community in geochemistry and geology.”

The tradition of AAAS Fellows began in 1874 and election for this honor is bestowed upon AAAS members by their peers. This year 489 members have been selected due to their “scientifically or socially distinguished efforts to advance science or its applications.” 

A Carnegie staff member since 1981, Carlson is widely recognized for his use

Saturn image is courtesy of NASA/JPL-Caltech/Space Science Institute.
October 29, 2020

Washington, DC—New work led by Carnegie’s Matt Clement reveals the likely original locations of Saturn and Jupiter. These findings refine our understanding of the forces that determined our Solar System’s unusual architecture, including the ejection of an additional planet between Saturn and Uranus, ensuring that only small, rocky planets, like Earth, formed inward of Jupiter.

In its youth, our Sun was surrounded by a rotating disk of gas and dust from which the planets were born.  The orbits of early formed planets were thought to be initially close-packed and circular, but gravitational interactions between the larger objects perturbed the arrangement and

January 28, 2021

Join us to learn about exoplanet science from Johanna Teske, a former Carnegie postdoc who joined our Earth and Planets Laboratory as a Staff Scientist last September. This is the first virtual program in our winter series of online conversations with several of our exciting investigators.  

Teske’s work aims to help scientists better understand the planetary formation process and explain why there is such tremendous planetary diversity in our galaxy. She uses observational data from the telescopes at Carnegie’s Las Campanas Observatory, as well as from space-based telescopes and other facilities, to estimate the interior and atmospheric

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of


Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics of the area and shape of the Earth--to identify, model and interpret this ground deformation.

She uses data from radar called Interferometric Synthetic Aperture Radar (InSAR), and data from the Global Positioning System (GPS) to characterize ground motion during volcanic unrest. She also collects gravity data, which indicate changes in mass and/or density underground. These data sets,

What sets George Cody apart from other geochemists is his pioneering use of sophisticated techniques such as enormous facilities for synchrotron radiation, and sample analysis with nuclear magnetic resonance (NMR) spectroscopy to characterize hydrocarbons. Today, Cody  applies these techniques to analyzing the organic processes that alter sediments as they mature into rock inside the Earth and the molecular structure of extraterrestrial organics.

Wondering about where we came from has occupied the human imagination since the dawn of consciousness. Using samples from comets and meteorites, George Cody tracks the element carbon as it moves from the interstellar medium, through

Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this data from continental areas of the planet that have not been studied before to better understand the elastic properties of Earth’s crust and upper mantle, the rigid region called the lithosphere.

By its nature seismology is indirect research and has limitations for interpreting features like temperature, melting, and exact composition. So Wagner looks at the bigger picture. She

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical