Mars mosaic courtesy of NASA
Washington, DC—Mars’ organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian...
Explore this Story
NASEM astrobiology briefing artwork
Washington, DC—NASA should incorporate astrobiology into all stages of future exploratory missions, according to a...
Explore this Story
Sarah Stewart was awarded a prestigious MacArthur fellowship for: “Advancing new theories of how celestial collisions give birth to planets and their natural satellites, such as the Earth...
Explore this Story
Washington, DC—Carnegie’s Scott Sheppard and his colleagues—Northern Arizona University’s Chad Trujillo,...
Explore this Story
Erik Hauri in the lab at Carnegie's Department of Terrestrial Magnetism
Washington, DC—Carnegie geochemist Erik Hauri, whose work upended our understanding of the Moon’s formation and the importance of water in Earth’s interior, died Wednesday in North...
Explore this Story
Visualization rendered by Dan Tell from the California Academy of Sciences using SCISS Uniview software and directed/written by Jackie Faherty from the American Museum of Natural History.
Washington, DC—New work from Carnegie’s Jonathan Gagné and the American Museum of Natural History’s Jacqueline Faherty identified nearly a thousand potential members and 31...
Explore this Story
: A blue, boron-bearing diamond with dark inclusions of a mineral called ferropericlase, which were examined as part of this study.  This gem weighs 0.03 carats.  Photo by Evan Smith/GIA.
Washington, DC—Blue diamonds—like the world-famous Hope Diamond at the National Museum of Natural History—formed up to four times deeper in the Earth’s mantle than most other...
Explore this Story


Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively...
Explore this Project
The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet...
Explore this Project
Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life...
Meet this Scientist
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in...
Meet this Scientist
You May Also Like...
What does a gestating baby planet look like? New research in Nature by a team including Carnegie’s Jaehan Bae investigated the effects of three planets in the process of forming...
Explore this Story
New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of the star’s seven...
Explore this Story
Washington, DC — A team of scientists, including Carnegie's Conel Alexander and Jianhua Wang, studied the hydrogen in water from the Martian interior and found that Mars formed from similar building...
Explore this Story

Explore Carnegie Science

Rough diamond photograph purchased from iStock
December 21, 2020

Washington, DC— A diamond lasts forever, but that doesn’t mean all diamonds have a common history. 

Some diamonds were formed billions of years ago in space as the carbon-rich atmospheres of dying stars expanded and cooled. In our own planet’s lifetime, high-temperatures and pressures in the mantle produced the diamonds that are familiar to us as gems. 5,000 years ago, a large meteorite that struck a carbon-rich sediment on Earth produced an impact diamond.

Each of these diamonds differs from the others in both composition and genesis, but all are categorized as “diamond” by the authoritative guide to minerals—the International

Islands of Four Mountains, Alaska. USGS Photo by John Lyons.
December 3, 2020

Washington, DC— A small group of volcanic islands in Alaska's Aleutian chain could actually be part of a single, previously unrecognized giant volcano in the same category as Yellowstone, according to work from a research team, including Carnegie’s Diana Roman, Lara Wagner, Hélène Le Mével, and Daniel Portner, as well as recently departed postdoc Helen Janiszewski (now at University of Hawaiʻi at Mānoa), who will present their findings at the American Geophysical Union’s Fall Meeting next week.

The Islands of the Four Mountains in the central Aleutians is a tight group of six volcanos: Carlisle, Cleveland, Herbert, Kagamil, Tana and

Richard Carlson, Director Carnegie Earth and Planets Laboratory
November 24, 2020

Washington, DC— Richard Carlson, Director of Carnegie’s Earth and Planets Laboratory, has been named a Fellow of the American Association for the Advancement of Science. He was selected for his “outstanding research, leadership, innovation, and service to the community in geochemistry and geology.”

The tradition of AAAS Fellows began in 1874 and election for this honor is bestowed upon AAAS members by their peers. This year 489 members have been selected due to their “scientifically or socially distinguished efforts to advance science or its applications.” 

A Carnegie staff member since 1981, Carlson is widely recognized for his use

Saturn image is courtesy of NASA/JPL-Caltech/Space Science Institute.
October 29, 2020

Washington, DC—New work led by Carnegie’s Matt Clement reveals the likely original locations of Saturn and Jupiter. These findings refine our understanding of the forces that determined our Solar System’s unusual architecture, including the ejection of an additional planet between Saturn and Uranus, ensuring that only small, rocky planets, like Earth, formed inward of Jupiter.

In its youth, our Sun was surrounded by a rotating disk of gas and dust from which the planets were born.  The orbits of early formed planets were thought to be initially close-packed and circular, but gravitational interactions between the larger objects perturbed the arrangement and

January 28, 2021

Join us to learn about exoplanet science from Johanna Teske, a former Carnegie postdoc who joined our Earth and Planets Laboratory as a Staff Scientist last September. This is the first virtual program in our winter series of online conversations with several of our exciting investigators.  

Teske’s work aims to help scientists better understand the planetary formation process and explain why there is such tremendous planetary diversity in our galaxy. She uses observational data from the telescopes at Carnegie’s Las Campanas Observatory, as well as from space-based telescopes and other facilities, to estimate the interior and atmospheric

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive