Fullerene C60 purchased from Shutterstock
Washington, DC—Carnegie’s Yingwei Fei and Lin Wang were part of an international research team that synthesized a new ultrahard form of carbon glass with a wealth of potential practical...
Explore this Story
Alycia Weinberger
Washington, DC—Carnegie’s Alycia Weinberger and collaborators from the University of Texas at Austin and the Korean Astronomy and Space Science Institute received last month a $1.2...
Explore this Story
Carnegie mineralogist Robert Hazen
Washington, DC—Carnegie mineralogist Robert Hazen—who advanced the concept that Earth’s geology was shaped by the rise and sustenance of life—was elected last month a fellow...
Explore this Story
Ho-kwang "Dave" Mao
Washington, DC—The first-ever silicate mineral recovered from the Earth’s lower mantle has been named after retired Carnegie scientist Ho-kwang “Dave” Mao, an experimental...
Explore this Story
Rendering of the Giant Magellan Telescope courtesy of the GMTO.
Washington, DC—The National Academies of Science, Engineering, and Medicine Thursday ranked the U.S. Extremely Large Telescope program as a top strategic priority, recommending federal support...
Explore this Story
Illustration of Neptune's interior purchased from Shutterstock
Washington, DC—A layer of “hot,” electrically conductive ice could be responsible for generating the magnetic fields of ice giant planets like Uranus and Neptune. New work from...
Explore this Story
Peter van Keken
Washington, DC— Carnegie geophysicist and geodynamicist Peter van Keken, whose work reveals Earth’s thermal and chemical evolution, was elected a Fellow of the American Geophysical Union...
Explore this Story
Carnegie Earth and Planets Laboratory isotope geochemist Anat Shahar
Washington, DC—Carnegie geochemist Anat Shahar, who probes the formation, evolution, and interior dynamics of Earth and other rocky planets, has been selected to give the Reginald Daly Lecture...
Explore this Story

Pages

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the...
Explore this Project
The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
Peter Gao's research interests include planetary atmospheres; exoplanet characterization; planet formation and evolution; atmosphere-surface-interior interactions; astrobiology; habitability; biosignatures; numerical modeling. His arrival in September 2021 continued Carnegie's...
Meet this Scientist
Geochemist and director of Terrestrial Magnetism, now known as the Earth and Planets Laboratory, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the...
Meet this Scientist
Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics...
Meet this Scientist
You May Also Like...
Washington, D.C.— A new planet-hunting survey has revealed planetary candidates with orbital periods as short as four hours and so close to their host stars that they are nearly skimming the stellar...
Explore this Story
Washington, D.C.—Using revolutionary new techniques, a team led by Carnegie’s Malcolm Guthrie has made a striking discovery about how ice behaves under pressure, changing ideas that date back almost...
Explore this Story
The 2018 eruption of Kīlauea Volcano in Hawai‘i provided scientists with an unprecedented opportunity to identify new factors that could help forecast the hazard potential of future eruptions.
Explore this Story

Explore Carnegie Science

Fullerene C60 purchased from Shutterstock
November 24, 2021

Washington, DC—Carnegie’s Yingwei Fei and Lin Wang were part of an international research team that synthesized a new ultrahard form of carbon glass with a wealth of potential practical applications for devices and electronics. It is the hardest known glass with the highest thermal conductivity among all glass materials. Their findings are published in Nature.

Function follows form when it comes to understanding the properties of a material. How its atoms are chemically bonded to each other, and their resulting structural arrangement, determines a material’s physical qualities—both those that are observable by the naked eye and those that are only revealed

Alycia Weinberger
November 22, 2021

Washington, DC—Carnegie’s Alycia Weinberger and collaborators from the University of Texas at Austin and the Korean Astronomy and Space Science Institute received last month a $1.2 million grant from the Heising-Simons Foundation to develop an instrument for the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile that will enable breakthroughs in our understanding of the planet formation process.

Called MagNIFIES, for Magellans' Near-Infrared Five-band Immersion grating Efficient Spectrograph, the completed instrument will have the largest simultaneous spectral coverage of any high-resolution spectrograph in the world. It was the brainchild of

Carnegie mineralogist Robert Hazen
November 16, 2021

Washington, DC—Carnegie mineralogist Robert Hazen—who advanced the concept that Earth’s geology was shaped by the rise and sustenance of life—was elected last month a fellow of the International Society for the Study of the Origin of Life – The International Astrobiology Society.

It is the only professional society dedicated to origins research and its 500 members represent disciplines ranging from molecular biology to astronomy. Fellows are selected for their “exceptional and sustained contributions” to the field.

Hazen pioneered the concept of mineral evolution—linking an explosion in mineral diversity to the rise of life on

Ho-kwang "Dave" Mao
November 12, 2021

Washington, DC—The first-ever silicate mineral recovered from the Earth’s lower mantle has been named after retired Carnegie scientist Ho-kwang “Dave” Mao, an experimental geophysicist whose work redefined our understanding of how materials behave under the extreme pressure and temperature conditions found inside Earth and other planets.

A team led by the University of Nevada Las Vegas’ Oliver Tschauner reported the discovery in Science this week and Carnegie’s Yingwei Fei wrote an accompanying essay in the same issue, contextualizing the importance of the work and the significance of the chosen name—davemaoite.

In 1976 Mao and

No content in this section.

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young. None of the accepted paradigms explain why the magmatic and tectonic activity extend so far east of the North American plate margin. By applying numerous techniques ranging from geochemistry and petrology to active and passive seismic imaging to geodynamic modeling, the researchers examine an assemblage of new data that will provide key information about the roles of lithosphere

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-

What sets George Cody apart from other geochemists is his pioneering use of sophisticated techniques such as enormous facilities for synchrotron radiation, and sample analysis with nuclear magnetic resonance (NMR) spectroscopy to characterize hydrocarbons. Today, Cody  applies these techniques to analyzing the organic processes that alter sediments as they mature into rock inside the Earth and the molecular structure of extraterrestrial organics.

Wondering about where we came from has occupied the human imagination since the dawn of consciousness. Using samples from comets and meteorites, George Cody tracks the element carbon as it moves from the interstellar medium, through

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-