Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, Proxima Centauri, Proxima b
Washington, DC— An international team of astronomers including Carnegie’s Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Jackie Faherty, American Museum of Natural History
Washington, DC— Brown dwarfs are smaller than stars, but more massive than giant planets. As such, they provide a natural link between astronomy and planetary science. However, they also show...
Explore this Story
Washington, DC— New work from Carnegie’s Peter Driscoll suggests Earth’s ancient magnetic field was significantly different than the present day field, originating from several...
Explore this Story
Washington, D.C.— When dormant volcanoes are about to erupt, they show some predictive characteristics—seismic activity beneath the volcano starts to increase, gas escapes through the...
Explore this Story
Don Francis, McGill University, Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Washington, DC— New work from a team including Carnegie’s Hanika Rizo and Richard Carlson, as well as Richard Walker from the University of Maryland, has found material in rock formations...
Explore this Story
Washington, DC— Planet-hunting is an ongoing process that’s resulting in the discovery of more and more planets orbiting distant stars. But as the hunters learn more about the variety...
Explore this Story
Washington, DC—A team of astronomers from Carnegie and Western University in Ontario, Canada, has discovered one of the youngest and brightest free-floating, planet-like objects within...
Explore this Story
Washington, D.C.—Scientists have long been puzzled about what makes Mercury’s surface so dark. The innermost planet reflects much less sunlight than the Moon, a body on which surface...
Explore this Story

Pages

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique...
Explore this Project
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates...
Meet this Scientist
Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life...
Meet this Scientist
You May Also Like...
 An international team of astronomers including Carnegie’s Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world,...
Explore this Story
New work from an international team of astronomers including Carnegie’s Jaehan Bae used archival radio telescope data to develop a new method for finding very young extrasolar planets. Of...
Explore this Story
It is well understood that Earth formed from the accretion of matter surrounding the young Sun. Eventually the planet grew to such a size that denser iron metal sank inward, to form the beginnings of...
Explore this Story

Explore Carnegie Science

GW Orionis Credit: ESO/Exeter/Kraus et al., ALMA (ESO/NAOJ/NRAO)
September 3, 2020

Washington, DC— The discovery that our galaxy is teeming with exoplanets has also revealed the vast diversity of planetary systems out there and raised questions about the processes that shaped them. New work published in Science by an international team including Carnegie’s Jaehan Bae could explain the architecture of multi-star systems in which planets are separated by wide gaps and do not orbit on the same plane as their host star’s equatorial center.

“In our Solar System, the eight planets and many other minor objects orbit in a flat plane around the Sun; but in some distant systems, planets orbit on an incline—sometimes a very steep one,”

Earth's layers courtesy of Shutterstock
August 31, 2020

Washington, DC— The composition of Earth’s mantle was more shaped by interactions with the oceanic crust than previously thought, according to work from Carnegie’s Jonathan Tucker and Peter van Keken along with colleagues from Oxford that was recently published in Geochemistry, Geophysics, Geosystems.

During its evolution, our planet separated into distinct layers—core, mantle, and crust. Each has its own composition and the dynamic processes through which these layers interact with their neighbors can teach us about Earth’s geologic history.

Plate tectonic processes allow for continuous evolution of the crust and play a key role in our planet

Quartz crystals courtesy of Shutterstock.
August 26, 2020

Washington, DC— When a meteorite hurtles through the atmosphere and crashes to Earth, how does its violent impact alter the minerals found at the landing site? What can the short-lived chemical phases created by these extreme impacts teach scientists about the minerals existing at the high-temperature and pressure conditions found deep inside the planet?

New work led by Carnegie’s Sally June Tracy examined the crystal structure of the silica mineral quartz under shock compression and is challenging longstanding assumptions about how this ubiquitous material behaves under such intense conditions. The results are published in Science Advances.

"Quartz is one

Johanna Teske
August 19, 2020

Washington, DC— In September, astronomer Johanna Teske will join Carnegie’s Earth and Planets Laboratory as a Staff Scientist. Teske has been with Carnegie since 2014, first as the inaugural Carnegie Origins Postdoctoral Fellow and currently as a NASA Hubble Fellow. 

“I’m thrilled to be able to continue my career at Carnegie and to be the first Staff Scientist hired at the newly formed EPL,” Teske said. “This institution has shaped my approach to research and I am excited to advance to the next stage of my career as one of its faculty.”   

Teske’s work aims to help scientists better understand the

No content in this section.

Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 - 2003, CAN 3 from 2003 - 2008, and CAN 5 from 2009 - 2015. The Carnegie team focused on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich primitive planetary bodies, prebiotic molecular synthesis through catalyzing with

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de