Not only did our early Solar System potentially consist of five or even six giant worlds, but there may have been a large number of inner, terrestrial planets that were ejected back in the Solar...
Explore this Story
“I think there are definitely things out there bigger than Pluto that are yet to be discovered,” Scott Sheppard talks to The Washington Post about the possibility of an undiscovered outer Solar...
Explore this Story
New work from a team including Carnegie’s Christopher Glein has revealed the pH of water spewing from a geyser-like plume on Saturn’s moon Enceladus. Their findings are an important step toward...
Explore this Story
Washington, DC—New research from a team led by Carnegie’s Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and...
Explore this Story
New research from a team led by Carnegie’s Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be...
Explore this Story
The ancient lunar surface once erupted with geysers of lava — and now, a team of scientists including Carnegie's Erik Hauri think they know what caused those fiery fountains....
Explore this Story
Washington, DC— Tiny beads of volcanic glass found on the lunar surface during the Apollo missions are a sign that fire fountain eruptions took place on the Moon’s surface. Now, scientists from Brown...
Explore this Story
Daily Mail: A shockwave from a catastrophic supernova explosion may have triggered the birth of our Solar System when it crashed into a cloud of gas. Scientists studying this process, Carnegie's Alan...
Explore this Story

Pages

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young....
Explore this Project
The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission to orbit Mercury following three flybys of that planet is a scientific investigation of the planet Mercury. Understanding Mercury, and the forces that have shaped it is fundamental to understanding the terrestrial...
Explore this Project
Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet...
Explore this Project
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is...
Meet this Scientist
Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes—atomic variants of elements with the same number of protons but different numbers of neutrons. Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or...
Meet this Scientist
You May Also Like...
Through late February, five planets will align in early morning sky, and can be seen unaided. Jackie Faherty tells NPR it is like the planetary Academy Awards. More
Explore this Story
Washington, D.C.— Seawater circulation pumps hydrogen and boron into the oceanic plates that make up the seafloor, and some of this seawater remains trapped as the plates descend into the mantle at...
Explore this Story
Carnegie's Larry Nittler, deputy principal investigator for the MESSENGER mission, talks to BBC News about its crash into Mercury and all we've learned from the mission. More
Explore this Story

Explore Carnegie Science

NASEM astrobiology briefing artwork
October 10, 2018

Washington, DC—NASA should incorporate astrobiology into all stages of future exploratory missions, according to a new report from the National Academies of Sciences, Engineering, and Medicine presented Wednesday by the chair of the study, University of Toronto’s Barbara Sherwood Lollar, and by Carnegie’s Alan Boss, one of the report’s 17 expert authors.

Astrobiology addresses the factors that allowed life to originate and develop in the universe and investigates whether life exists on planets other than Earth. This highly interdisciplinary and constantly adapting field incorporates expertise in biology, chemistry, geology, planetary science, and physics. According to the report’s

October 4, 2018

Sarah Stewart was awarded a prestigious MacArthur fellowship for: “Advancing new theories of how celestial collisions give birth to planets and their natural satellites, such as the Earth and Moon.”

Stewart is currently a professor in the Department of Earth and Planetary Sciences at the University of California Davis. Her group studies the formation and evolution of planetary bodies by using shock wave experiments to measure the properties of materials and conducting simulations of planetary processes. She was a Carnegie postdoctoral fellow from 2002 to 2003. For more see Macfound.org
 

October 2, 2018

Washington, DC—Carnegie’s Scott Sheppard and his colleagues—Northern Arizona University’s Chad Trujillo, and the University of Hawaii’s David Tholen—are once again redefining our Solar System’s edge. They discovered a new extremely distant object far beyond Pluto with an orbit that supports the presence of an even-farther-out, Super-Earth or larger Planet X.

The newly found object, called 2015 TG387, was announced Tuesday by the International Astronomical Union’s Minor Planet Center.  A paper with the full details of the discovery has also been submitted to The Astronomical Journal.

2015 TG387 was discovered about 80 astronomical units (AU) from the Sun, a measurement

Erik Hauri in the lab at Carnegie's Department of Terrestrial Magnetism
September 6, 2018

Washington, DC—Carnegie geochemist Erik Hauri, whose work upended our understanding of the Moon’s formation and the importance of water in Earth’s interior, died Wednesday in North Potomac, MD, following a battle with cancer. He was 52.

Hauri joined Carnegie as a staff scientist in 1994 and spent nearly 25 years investigating the geochemistry of the Earth, Moon, and other celestial objects.  Hauri had a particular interest in water, which he called the most-important molecule in our Solar System, saying that understanding where it came from and how it got distributed among the planets and various other bodies would unlock the secrets of how our Solar System evolved.

No content in this section.

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist. Image

Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is in developing protocols, instrumentation, and procedures for life detection in samples from the early Earth and elsewhere in the Solar System.

Steele has developed several instrument and mission concepts for future Mars missions and became involved in the 2011 Mars Science Laboratory mission as a member of the Sample Analysis at Mars (SAM) team. For  a number of years he journeyed to the

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical fingerprints of

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de facto

Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies.

The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium, iron, calcium, aluminum, titanium, sodium and sometimes water are distributed, and how they behave when melting occurs and  when magmas are generated and transported to the surface in volcanoes.

The presence of water, carbon and other so-called volatiles have a large influence on the strength and melting point of planetary interiors. This in turn determines where magmas are