Mars mosaic courtesy of NASA
Washington, DC—Mars’ organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian...
Explore this Story
NASEM astrobiology briefing artwork
Washington, DC—NASA should incorporate astrobiology into all stages of future exploratory missions, according to a...
Explore this Story
Sarah Stewart was awarded a prestigious MacArthur fellowship for: “Advancing new theories of how celestial collisions give birth to planets and their natural satellites, such as the Earth...
Explore this Story
Washington, DC—Carnegie’s Scott Sheppard and his colleagues—Northern Arizona University’s Chad Trujillo,...
Explore this Story
Erik Hauri in the lab at Carnegie's Department of Terrestrial Magnetism
Washington, DC—Carnegie geochemist Erik Hauri, whose work upended our understanding of the Moon’s formation and the importance of water in Earth’s interior, died Wednesday in North...
Explore this Story
Visualization rendered by Dan Tell from the California Academy of Sciences using SCISS Uniview software and directed/written by Jackie Faherty from the American Museum of Natural History.
Washington, DC—New work from Carnegie’s Jonathan Gagné and the American Museum of Natural History’s Jacqueline Faherty identified nearly a thousand potential members and 31...
Explore this Story
: A blue, boron-bearing diamond with dark inclusions of a mineral called ferropericlase, which were examined as part of this study.  This gem weighs 0.03 carats.  Photo by Evan Smith/GIA.
Washington, DC—Blue diamonds—like the world-famous Hope Diamond at the National Museum of Natural History—formed up to four times deeper in the Earth’s mantle than most other...
Explore this Story


Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 -...
Explore this Project
Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1...
Explore this Project
The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique...
Explore this Project
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also...
Meet this Scientist
Peter Gao's research interests include planetary atmospheres; exoplanet characterization; planet formation and evolution; atmosphere-surface-interior interactions; astrobiology; habitability; biosignatures; numerical modeling. His arrival in September 2021 continued Carnegie's...
Meet this Scientist
You May Also Like...
Washington, DC— A team of scientists including Carnegie’s Dina Bower and Andrew Steele weigh in on whether microstructures found in 3.46 billion-year-old samples of a silica-rich rock called chert...
Explore this Story
A surprising analysis of the composition  of gas giant exoplanets and their host stars shows that there isn’t a strong correlation between their compositions when it comes to elements...
Explore this Story
Carnegie trustee emeritus Frank Press, a National Medal of Science laureate and former president of the National Academy of Sciences, died January 29 at his home in Chapel Hill, N.C. He was 95. Press...
Explore this Story

Explore Carnegie Science

Fullerene C60 purchased from Shutterstock
November 24, 2021

Washington, DC—Carnegie’s Yingwei Fei and Lin Wang were part of an international research team that synthesized a new ultrahard form of carbon glass with a wealth of potential practical applications for devices and electronics. It is the hardest known glass with the highest thermal conductivity among all glass materials. Their findings are published in Nature.

Function follows form when it comes to understanding the properties of a material. How its atoms are chemically bonded to each other, and their resulting structural arrangement, determines a material’s physical qualities—both those that are observable by the naked eye and those that are only revealed

Alycia Weinberger
November 22, 2021

Washington, DC—Carnegie’s Alycia Weinberger and collaborators from the University of Texas at Austin and the Korean Astronomy and Space Science Institute received last month a $1.2 million grant from the Heising-Simons Foundation to develop an instrument for the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile that will enable breakthroughs in our understanding of the planet formation process.

Called MagNIFIES, for Magellans' Near-Infrared Five-band Immersion grating Efficient Spectrograph, the completed instrument will have the largest simultaneous spectral coverage of any high-resolution spectrograph in the world. It was the brainchild of

Carnegie mineralogist Robert Hazen
November 16, 2021

Washington, DC—Carnegie mineralogist Robert Hazen—who advanced the concept that Earth’s geology was shaped by the rise and sustenance of life—was elected last month a fellow of the International Society for the Study of the Origin of Life – The International Astrobiology Society.

It is the only professional society dedicated to origins research and its 500 members represent disciplines ranging from molecular biology to astronomy. Fellows are selected for their “exceptional and sustained contributions” to the field.

Hazen pioneered the concept of mineral evolution—linking an explosion in mineral diversity to the rise of life on

Ho-kwang "Dave" Mao
November 12, 2021

Washington, DC—The first-ever silicate mineral recovered from the Earth’s lower mantle has been named after retired Carnegie scientist Ho-kwang “Dave” Mao, an experimental geophysicist whose work redefined our understanding of how materials behave under the extreme pressure and temperature conditions found inside Earth and other planets.

A team led by the University of Nevada Las Vegas’ Oliver Tschauner reported the discovery in Science this week and Carnegie’s Yingwei Fei wrote an accompanying essay in the same issue, contextualizing the importance of the work and the significance of the chosen name—davemaoite.

In 1976 Mao and

No content in this section.

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

Carnegie was once part of the NASA Astrobiology Institute (NAI).Carnegie Science at Broad Branch Road was one of the  founding members of the 1998 teams who partnered with NASA, and remained a member through several Cooperative Agreement Notices (CANS):  CAN 1  from 1998 - 2003, CAN 3 from 2003 - 2008, and CAN 5 from 2009 - 2015. The Carnegie team focused on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich primitive planetary bodies, prebiotic molecular synthesis through catalyzing with

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

What sets George Cody apart from other geochemists is his pioneering use of sophisticated techniques such as enormous facilities for synchrotron radiation, and sample analysis with nuclear magnetic resonance (NMR) spectroscopy to characterize hydrocarbons. Today, Cody  applies these techniques to analyzing the organic processes that alter sediments as they mature into rock inside the Earth and the molecular structure of extraterrestrial organics.

Wondering about where we came from has occupied the human imagination since the dawn of consciousness. Using samples from comets and meteorites, George Cody tracks the element carbon as it moves from the interstellar medium, through

Geochemist and director of Terrestrial Magnetism, now known as the Earth and Planets Laboratory, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental crust.

 Most all of the chemical diversity in the universe comes from the nuclear reactions inside stars, in a process called nucleosynthesis. To answer his questions, Carlson developes novel procedures using instruments called mass spectrometers to make precise measurements of isotopes--atoms of an element with different numbers of

Roiling cauldrons of liquid-laden material flow within Earth’s rocky interior. Understanding how this matter moves and changes is essential to deciphering Earth’s formation and evolution as well as the processes that create seismic activity, such as earthquakes and volcanoes. Bjørn Mysen probes this hidden environment in the laboratory and, based on his results, models can help explain what goes on in this remote realm.

Mysen investigates changes in the atomic properties of molten silicates at high pressures and temperatures that pervade the interior Earth. Silicates comprise most of the Earth's crust and mantle. He uses devices, such as the diamond anvil

Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes—atomic variants of elements with the same number of protons but different numbers of neutrons. Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or fingerprints, of the oxygen isotopes 16O, 17O, and 18O. Weathering, ground water, and direct deposition of atmospheric aerosols change the ratios of the isotopes in a rock revealing a lot about the past climate.

Douglas Rumble’s research is centered on these three stable isotopes of oxygen and the four stable isotopes of sulfur 32S , 33S , 34S, and 36S. In addition to