“I think there are definitely things out there bigger than Pluto that are yet to be discovered,” Scott Sheppard talks to The Washington Post about the possibility of an undiscovered outer Solar...
Explore this Story
New work from a team including Carnegie’s Christopher Glein has revealed the pH of water spewing from a geyser-like plume on Saturn’s moon Enceladus. Their findings are an important step toward...
Explore this Story
Washington, DC—New research from a team led by Carnegie’s Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and...
Explore this Story
New research from a team led by Carnegie’s Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be...
Explore this Story
The ancient lunar surface once erupted with geysers of lava — and now, a team of scientists including Carnegie's Erik Hauri think they know what caused those fiery fountains....
Explore this Story
Washington, DC— Tiny beads of volcanic glass found on the lunar surface during the Apollo missions are a sign that fire fountain eruptions took place on the Moon’s surface. Now, scientists from Brown...
Explore this Story
Daily Mail: A shockwave from a catastrophic supernova explosion may have triggered the birth of our Solar System when it crashed into a cloud of gas. Scientists studying this process, Carnegie's Alan...
Explore this Story
Science Magazine talks to Alan Boss about how Jupiter and Saturn may have formed. More
Explore this Story

Pages

The NASA Astrobiology Institute (NAI) Carnegie Team focuses on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich primitive planetary bodies,...
Explore this Project
Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of...
Explore this Project
Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of...
Explore this Project
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant...
Meet this Scientist
Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies. The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium,...
Meet this Scientist
You May Also Like...
Washington, D.C.--Scientists with the Giant Magellan Telescope Organization have completed the most challenging large astronomical mirror ever made. The mirror will be part of the 25-meter Giant...
Explore this Story
The world’s 2500 rarest minerals have now been categorised for the first time, revealing intriguing implications. Most have been formed in processes directly or indirectly related to living organisms...
Explore this Story
Plumes of hot magma from the volcanic hotspot that formed Réunion Island in the Indian Ocean rise from an unusually primitive source deep beneath the Earth’s surface. The mantle differentiation event...
Explore this Story

Explore Carnegie Science

June 13, 2018

Washington, DC—New work from an international team of astronomers including Carnegie’s Jaehan Bae used archival radio telescope data to develop a new method for finding very young extrasolar planets. Their technique successfully confirmed the existence of two previously predicted Jupiter-mass planets around the star HD 163296. Their work is published by The Astrophysical Journal Letters.

Of the thousands of exoplanets discovered by astronomers, only a handful are in their formative years. Finding more baby planets will help astronomers answer the many outstanding questions about planet formation, including the process by which our own Solar System came into existence.

Young

June 7, 2018

Washington, DC— NASA’s Curiosity rover has discovered new “tough” organic molecules in three-billion-year-old sedimentary rocks on Mars, increasing the chances that the record of habitability and potential life could have been preserved on the Red Planet, despite extremely harsh conditions on the surface that can easily break down organic molecules.

“The Martian surface is exposed to radiation from space and harsh chemicals that break down organic matter, so finding ancient organic molecules in the top five centimeters, from a time when Mars may have been habitable, bodes well for us to learn the story of organic molecules on Mars with future missions that will drill deeper,” said

June 6, 2018

Washington, DC—A team of scientists led by Carnegie’s Shaunna Morrison and including Bob Hazen have revealed the mineralogy of Mars at an unprecedented scale, which will help them understand the planet’s geologic history and habitability. Their findings are published in two American Mineralogist papers.

Minerals form from novel combinations of elements. These combinations can be facilitated by geological activity, including volcanoes and water-rock interactions. Understanding the mineralogy of another planet, such as Mars, allows scientists to backtrack and understand the forces that shaped their formation in that location.

An instrument on NASA’s Mars Curiosity Rover

April 23, 2018

Washington, DC—A team of researchers including Carnegie’s Bob Hazen is using network analysis techniques—made popular through social media applications—to find patterns in Earth’s natural history, as detailed in a paper published by Proceedings of the National Academy of Science. 

By using network analysis to search for communities of marine life in the fossil records of the Paleobiology Database, the team—including researchers at Harvard University and Rensselaer Polytechnic Institute—was able to quantify the ecological impacts of major events like mass extinctions. Their work may help humanity anticipate the consequences of a “sixth mass extinction,” which the rate of species

No content in this section.

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist. Image

The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission to orbit Mercury following three flybys of that planet is a scientific investigation of the planet Mercury. Understanding Mercury, and the forces that have shaped it is fundamental to understanding the terrestrial planets and their evolution. This is the first orbital mission around the innermost planet. It took years of planning and complex trajectory to reach Mercury. Carnegie scientists have led the way revealing results that have redefined what we thought we knew about Mercury and the other rocky planets. For more information see http://messenger.jhuapl.edu/

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical fingerprints of

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de facto

Hélène Le Mével studies volcanoes. Her research focuses on understanding the surface signals that ground deformations make to infer the ongoing process of the moving magma  in the underlying reservoir. Toward this end she uses space and field-based geodesy--the mathematics of the area and shape of the Earth--to identify, model and interpret this ground deformation.

She uses data from radar called Interferometric Synthetic Aperture Radar (InSAR), and data from the Global Positioning System (GPS) to characterize ground motion during volcanic unrest. She also collects gravity data, which indicate changes in mass and/or density underground. These data sets, combined with the surface

Roiling cauldrons of liquid-laden material flow within Earth’s rocky interior. Understanding how this matter moves and changes is essential to deciphering Earth’s formation and evolution as well as the processes that create seismic activity, such as earthquakes and volcanoes. Bjørn Mysen probes this hidden environment in the laboratory and, based on his results, models can help explain what goes on in this remote realm.

Mysen investigates changes in the atomic properties of molten silicates at high pressures and temperatures that pervade the interior Earth. Silicates comprise most of the Earth's crust and mantle. He uses devices, such as the diamond anvil cell, to subject melts