Washington, DC— New work from Carnegie’s Peter Driscoll suggests Earth’s ancient magnetic field was significantly different than the present day field, originating from several...
Explore this Story
Washington, D.C.— When dormant volcanoes are about to erupt, they show some predictive characteristics—seismic activity beneath the volcano starts to increase, gas escapes through the...
Explore this Story
Don Francis, McGill University, Carnegie Science, Carnegie Institution for Science, Carnegie Institution
Washington, DC— New work from a team including Carnegie’s Hanika Rizo and Richard Carlson, as well as Richard Walker from the University of Maryland, has found material in rock formations...
Explore this Story
Washington, DC— Planet-hunting is an ongoing process that’s resulting in the discovery of more and more planets orbiting distant stars. But as the hunters learn more about the variety...
Explore this Story
Washington, DC—A team of astronomers from Carnegie and Western University in Ontario, Canada, has discovered one of the youngest and brightest free-floating, planet-like objects within...
Explore this Story
Washington, D.C.—Scientists have long been puzzled about what makes Mercury’s surface so dark. The innermost planet reflects much less sunlight than the Moon, a body on which surface...
Explore this Story
Washington, DC— A team of scientists including Carnegie’s Dina Bower and Andrew Steele weigh in on whether microstructures found in 3.46 billion-year-old samples of a silica-rich rock...
Explore this Story
"What is most astonishing about rare minerals is that the processes that ultimately forms most of them comes from biology," Bob Hazen tells the Los Angeles Times. "As life changes...
Explore this Story

Pages

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of...
Explore this Project
CALL FOR PROPOSALS Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas. Carnegie Science Venture grants are internal awards of up to $100,000 that are...
Explore this Project
Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively...
Explore this Project
Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life...
Meet this Scientist
Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s...
Meet this Scientist
Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes—atomic variants of elements with the same number of protons but different numbers of neutrons. Seawater, rain water, oxygen, and ozone, for instance, all have different...
Meet this Scientist
You May Also Like...
Washington, D.C.— Carnegie Science is excited to launch a new immersive program called Expedition Earth: Roads to Discovery. These experiences are more than just another lecture series (although, don...
Explore this Story
AudioWashington, D.C.— Reconstructing the rise of life during the period of Earth’s history when it first evolved is challenging. Earth’s oldest sedimentary rocks are not only rare, but also almost...
Explore this Story
Washington, DC— New work from Carnegie’s Peter Driscoll suggests Earth’s ancient magnetic field was significantly different than the present day field, originating from several poles rather than the...
Explore this Story

Explore Carnegie Science

The planet Earth on April 17, 2019, courtesy NOAA/NASA EPIC Team.
June 3, 2019

Washington, DC—The first minerals to form in the universe were nanocrystalline diamonds, which condensed from gases ejected when the first generation of stars exploded. Diamonds that crystallize under the extreme pressure and temperature conditions deep inside of Earth are more typically encountered by humanity. What opportunities for knowledge are lost when mineralogists categorize both the cosmic travelers and the denizens of deep Earth as being simply “diamond”?

Could a new classification system that accounts for minerals’ distinct journeys help us better understand mineralogy as a process of universal and planetary evolution?

The current system

May 16, 2019

The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a venture grant for their proposal Carbon-rich Super-Earths: Constraining Internal Structure from Dynamic Compression Experiments. Plant Biology’s Sue Rhee and Global Ecology’s Joe Berry and Jen Johnson were awarded a Venture Grant for their project Thermo-adaptation of Photosynthesis in Extremophilic Desert Plants.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions.

Artist’s impression of the surface of the planet Proxima b courtesy of ESO/M. Kornmesser.
May 1, 2019

Washington, DC—Which of Earth’s features were essential for the origin and sustenance of life? And how do scientists identify those features on other worlds?

A team of Carnegie investigators with array of expertise ranging from geochemistry to planetary science to astronomy published this week in Science an essay urging the research community to recognize the vital importance of a planet’s interior dynamics in creating an environment that’s hospitable for life.

With our existing capabilities, observing an exoplanet’s atmospheric composition will be the first way to search for signatures of life elsewhere. However, Carnegie’s

Images of diamonds from Sierra Leone with sulfur-containing mineral inclusions courtesy of the Gemological Institute of America
April 25, 2019

Washington, DC— The longevity of Earth’s continents in the face of destructive tectonic activity is an essential geologic backdrop for the emergence of life on our planet. This stability depends on the underlying mantle attached to the landmasses. New research by a group of geoscientists from Carnegie, the Gemological Institute of America, and the University of Alberta demonstrates that diamonds can be used to reveal how a buoyant section of mantle beneath some of the continents became thick enough to provide long-term stability.

“We’ve found a way to use traces of sulfur from ancient volcanoes that made its way into the mantle and eventually into diamonds

No content in this section.

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young. None of the accepted paradigms explain why the magmatic and tectonic activity extend so far east of the North American plate margin. By applying numerous techniques ranging from geochemistry and petrology to active and passive seismic imaging to geodynamic modeling, the researchers examine an assemblage of new data that will provide key information about the roles of lithosphere

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature superconductor under pressure—a state predicted by theory, but thus far unattained—to discover new superconductors, and to learn what happens to materials in Earth’s deep interior where pressure and temperature conditions are extreme. 

Recently, a team including Struzhkin was the first to discover the conditions under which nickel oxide can turn into an electricity-

Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's ancient geodynamic processes.

Shirey’s past, current, and future studies reflect the diversity of continental rocks, encompassing a range of studies that include rocks formed anywhere from the deep mantle to the surface crust. His work spans a wide range of geologic settings such as volcanic rocks in continental rifts (giant crustal breaks where continents split apart), ancient and

Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this data from continental areas of the planet that have not been studied before to better understand the elastic properties of Earth’s crust and upper mantle, the rigid region called the lithosphere.

By its nature seismology is indirect research and has limitations for interpreting features like temperature, melting, and exact composition. So Wagner looks at the bigger picture. She

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from