Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC— The American Institute of Physics’ Center for History of Physics has awarded the Carnegie Institution for Science a $10,000 grant to organize and preserve the archives of...
Explore this Story
Washington, DC—New planetary formation models from Carnegie’s Alan Boss indicate that there may be an undiscovered population of gas giant planets orbiting around Sun-like stars at...
Explore this Story
Washington, DC—New work from Carnegie’s Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC— An international team of astronomers released the largest-ever compilation of exoplanet-detecting observations made using a technique called the radial velocity method. They...
Explore this Story
Yingwei Fei, a high-pressure experimentalist at the Geophysical Laboratory, and Peter Driscoll, theoretical geophysicist in the Department of Terrestrial Magnetism, have been awarded a Carnegie...
Explore this Story
Even though carbon is one of the most-abundant elements on Earth, it is actually very difficult to determine how much of it exists below the surface in Earth’s interior. Analysis by Carnegie...
Explore this Story
GIA, Gemological Institute of America, Carnegie Science, Carnegie Institution, Carnegie Institution for Science
Washington, DC—New research from a team including Carnegie’s Steven Shirey, Emma Bullock, and Jianhua Wang explains how the world’s biggest and most-valuable diamonds formed—...
Explore this Story
Washington, DC—A group of citizen scientists and professional astronomers, including Carnegie’s Jonathan Gagné, joined forces to discover an unusual hunting ground for exoplanets....
Explore this Story

Pages

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively...
Explore this Project
Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in...
Meet this Scientist
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
You May Also Like...
The American Institute of Physics’ Center for History of Physics has awarded the Carnegie Institution for Science a $10,000 grant to organize and preserve the archives of scientist Oliver H....
Explore this Story
"Then about a decade ago, Carlson found room for doubt, after comparing Earth rocks and space rocks using better instruments..." Read More  
Explore this Story
Washington, D.C.— In the search for Earth-like planets, it is helpful to look for clues and patterns that can help scientist narrow down the types of systems where potentially habitable planets are...
Explore this Story

Explore Carnegie Science

The planet Earth on April 17, 2019, courtesy NOAA/NASA EPIC Team.
June 3, 2019

Washington, DC—The first minerals to form in the universe were nanocrystalline diamonds, which condensed from gases ejected when the first generation of stars exploded. Diamonds that crystallize under the extreme pressure and temperature conditions deep inside of Earth are more typically encountered by humanity. What opportunities for knowledge are lost when mineralogists categorize both the cosmic travelers and the denizens of deep Earth as being simply “diamond”?

Could a new classification system that accounts for minerals’ distinct journeys help us better understand mineralogy as a process of universal and planetary evolution?

The current system

May 16, 2019

The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a venture grant for their proposal Carbon-rich Super-Earths: Constraining Internal Structure from Dynamic Compression Experiments. Plant Biology’s Sue Rhee and Global Ecology’s Joe Berry and Jen Johnson were awarded a Venture Grant for their project Thermo-adaptation of Photosynthesis in Extremophilic Desert Plants.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions.

Artist’s impression of the surface of the planet Proxima b courtesy of ESO/M. Kornmesser.
May 1, 2019

Washington, DC—Which of Earth’s features were essential for the origin and sustenance of life? And how do scientists identify those features on other worlds?

A team of Carnegie investigators with array of expertise ranging from geochemistry to planetary science to astronomy published this week in Science an essay urging the research community to recognize the vital importance of a planet’s interior dynamics in creating an environment that’s hospitable for life.

With our existing capabilities, observing an exoplanet’s atmospheric composition will be the first way to search for signatures of life elsewhere. However, Carnegie’s

Images of diamonds from Sierra Leone with sulfur-containing mineral inclusions courtesy of the Gemological Institute of America
April 25, 2019

Washington, DC— The longevity of Earth’s continents in the face of destructive tectonic activity is an essential geologic backdrop for the emergence of life on our planet. This stability depends on the underlying mantle attached to the landmasses. New research by a group of geoscientists from Carnegie, the Gemological Institute of America, and the University of Alberta demonstrates that diamonds can be used to reveal how a buoyant section of mantle beneath some of the continents became thick enough to provide long-term stability.

“We’ve found a way to use traces of sulfur from ancient volcanoes that made its way into the mantle and eventually into diamonds

No content in this section.

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's ancient geodynamic processes.

Shirey’s past, current, and future studies reflect the diversity of continental rocks, encompassing a range of studies that include rocks formed anywhere from the deep mantle to the surface crust. His work spans a wide range of geologic settings such as volcanic rocks in continental rifts (giant crustal breaks where continents split apart), ancient and

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

What sets George Cody apart from other geochemists is his pioneering use of sophisticated techniques such as enormous facilities for synchrotron radiation, and sample analysis with nuclear magnetic resonance (NMR) spectroscopy to characterize hydrocarbons. Today, Cody  applies these techniques to analyzing the organic processes that alter sediments as they mature into rock inside the Earth and the molecular structure of extraterrestrial organics.

Wondering about where we came from has occupied the human imagination since the dawn of consciousness. Using samples from comets and meteorites, George Cody tracks the element carbon as it moves from the interstellar medium, through