The scope of Earth and Planets Laboratory science courtesy of Katherine Cain.
Carnegie’s Earth and Planets Laboratory welcomes two new staff scientists whose expertise spans from terrestrial planet interiors to the atmospheres of distant worlds. Anne Pommier arrived this...
Explore this Story
Washington, DC—Carnegie’s Anat Shahar is the lead investigator on an interdisciplinary, multi-institution research team that this spring was awarded nearly $1.5 million from the Alfred P...
Explore this Story
Carnegie mineralogist Robert Hazen
Washington, DC—Carnegie Mineralogist Robert Hazen—who advanced the concept that Earth’s geology was shaped by the rise and sustenance of life—will be honored with the 2022...
Explore this Story
 Photo of inclusions in a super-deep diamond by Evan Smith/© 2021 GIA
Washington, DC— The cause of Earth’s deepest earthquakes has been a mystery to science for more than a century, but a team of Carnegie scientists may have cracked the case. New research...
Explore this Story
A violent stellar flare erupting on Proxima Centauri. Credit: NRAO/S. Dagnello.
Washington, DC— A team of astronomers including Carnegie’s Alycia Weinberger and former-Carnegie postdoc Meredith MacGregor, now an assistant professor at the University of Colorado...
Explore this Story
Lava deposits in Leilani Estates (Credit: B. Shiro, USGS)
Washington, DC— The 2018 eruption of Kīlauea Volcano in Hawai‘i provided scientists with an unprecedented opportunity to identify new factors that could help forecast the hazard potential...
Explore this Story
CLIPPIR diamonds by Robert Weldon, copyright GIA, courtesy Gem Diamonds Ltd.
Washington, DC— Diamonds that formed deep in the Earth’s mantle contain evidence of chemical reactions that occurred on the seafloor. Probing these gems can help geoscientists understand...
Explore this Story
Mars mosaic courtesy of NASA
Washington, DC— Carnegie’s Yingwei Fei is the namesake of an iron-titanuim oxide mineral discovered in a meteorite that originated on Mars. Caltech’s Chi Ma announced the find this...
Explore this Story

Pages

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively...
Explore this Project
Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the...
Explore this Project
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's...
Meet this Scientist
Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes—atomic variants of elements with the same number of protons but different numbers of neutrons. Seawater, rain water, oxygen, and ozone, for instance, all have different...
Meet this Scientist
You May Also Like...
A $2.7 million multi-disciplinary, multi-institutional NSF-Frontiers of Earth Science grant has been awarded to a team led by Carnegie’s Lara Wagner to study an active flat slab in Colombia. A...
Explore this Story
According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. It injected material from the exploding star into a neighboring...
Explore this Story
Washington, D.C. — For decades it has been thought that a shock wave from a supernova explosion triggered the formation of our Solar System. According to this theory, the shock wave also injected...
Explore this Story

Explore Carnegie Science

Marilyn Fogel
May 13, 2022

Washington, DC—Marilyn Louise Fogel, an isotope geochemist whose work touched on a broad scope of subjects ranging from astrobiology to paleoecology and climate change to human health, died Wednesday after a prolonged battle with ALS. She was 69.

Fogel spent 33 years as a Staff Scientist at Carnegie’s research campus in Washington D.C., at what is now the Institution’s Earth and Planets Laboratory, as well as a short stint as a visiting scholar at Carnegie’s Department of Plant Biology in California. She developed the use of stable isotopes to trace astrobiological, biogeochemical, and ecological processes, including the impact of climate variation on

April 26, 2022

Washington, DC— New work from an international team led by Carnegie’s Alexander Goncharov synthesized a new material composed of six nitrogen atoms in a ring, bringing scientists one step closer to creating a long-theorized, pure-nitrogen solid that could revolutionize energy storage and propulsion. Their findings published last week in Nature Chemistry.

Nitrogen is one of the most common elements in the universe and is abundant in biochemical compounds.  It is notable for the extremely strong triple bond of its elemental form—when two nitrogen atoms join to form N2 gas. This attraction is so strong that despite the abundance of nitrogen in

Shishaldin Volcano courtesy of Daniel Rasmussen
March 10, 2022

Washington, DC— New work from a Smithsonian-led team, including Carnegie’s Diana Roman, revealed what could be the most-important factor controlling the depth at which magma is stored under a volcano, upending long-held theories about the molten material’s upward journey through the Earth’s crust. Their findings—which could inform the creation of detailed models that more accurately forecast volcanic eruptions—are published in Science.

“Dozens of volcanoes around the world are either actively erupting or existing in states of unrest right now, putting millions of people at risk,” Roman said. “Improving our ability to forecast

Guided diamond nanothread synthesis illustrated by Samuel Dunning
March 2, 2022

Washington, DC— As hard as diamond and as flexible as plastic, highly sought-after diamond nanothreads would be poised to revolutionize our world—if they weren’t so difficult to make.

Recently, a team of scientists led by Carnegie’s Samuel Dunning and Timothy Strobel developed an original technique that predicts and guides the ordered creation of strong, yet flexible, diamond nanothreads, surmounting several existing challenges.  The innovation will make it easier for scientists to synthesize the nanothreads—an important step toward applying the material to practical problems in the future. The work was recently published in the Journal of the

No content in this section.

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Anne Pommier's research is dedicated to understanding how terrestrial planets work, especially the role of silicate and metallic melts in planetary interiors, from the scale of volcanic magma reservoirs to core-scale and planetary-scale processes.

She joined Carnegie in July 2021 from U.C. San Diego’s Scripps Institution of Oceanography, where she investigated the evolution and structure of planetary interiors, including our own Earth and its Moon, as well as Mars, Mercury, and the moon Ganymede.

Pommier’s experimental petrology and mineral physics work are an excellent addition to Carnegie’s longstanding leadership in lab-based mimicry of the

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-

Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this data from continental areas of the planet that have not been studied before to better understand the elastic properties of Earth’s crust and upper mantle, the rigid region called the lithosphere.

By its nature seismology is indirect research and has limitations for interpreting features like temperature, melting, and exact composition. So Wagner looks at the bigger picture. She