Many people have heard of Pangaea, the supercontinent that included all continents on Earth and began to break up about 175 million years ago. But before Pangaea, Earth’s landmasses ripped...
Explore this Story
Postdoctoral researcher at the Department of Terrestrial Magnetism (DTM), Miki Nakajima, has been awarded the eighth Postdoctoral Innovation and Excellence Award (PIE). These prizes are made through...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA/JPL-Caltech
Washington, DC— New work from a team of Carnegie scientists (and one Carnegie alumnus) asked whether any gas giant planets could potentially orbit TRAPPIST-1 at distances greater than that of...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Alan Boss
Washington, DC— According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, RRUFF
Washington, DC—Applying big data analysis to mineralogy offers a way to predict minerals missing from those known to science, as well as where to find new deposits, according to a...
Explore this Story
Several of our geochemistry, cosmochemistry, and astrobiology experts at Carnegie's Department of Terrestrial Magnetism and Geophysical Laboratory study the Moon—how it formed and the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science,
Diana Roman’s job sounds like a blast. Pun very much intended. Although many people find volcanoes scary, she knows how to make them fun and, more importantly, fascinating. A staff scientist...
Explore this Story
Washington, DC— Sometimes a brown dwarf is actually a planet—or planet-like anyway. A team led by Carnegie’s Jonathan Gagné, and including researchers from the Institute for...
Explore this Story


Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1...
Explore this Project
The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
The NASA Astrobiology Institute (NAI) Carnegie Team focuses on life’s chemical and physical evolution, from the interstellar medium, through planetary systems, to the emergence and detection of life by studying extrasolar planets, Solar System formation, organic rich...
Explore this Project
Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that...
Meet this Scientist
Roiling cauldrons of liquid-laden material flow within Earth’s rocky interior. Understanding how this matter moves and changes is essential to deciphering Earth’s formation and evolution as well as the processes that create seismic activity, such as earthquakes and volcanoes. Bjø...
Meet this Scientist
Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s...
Meet this Scientist
You May Also Like...
Carnegie geochemist Erik Hauri, whose work upended our understanding of the Moon’s formation and the importance of water in Earth’s interior, died Wednesday in North Potomac, MD,...
Explore this Story
Washington, D.C.— Seawater circulation pumps hydrogen and boron into the oceanic plates that make up the seafloor, and some of this seawater remains trapped as the plates descend into the mantle at...
Explore this Story
Washington, D.C.— The mantles of Earth and other rocky planets are rich in magnesium and oxygen. Due to its simplicity, the mineral magnesium oxide is a good model for studying the nature of...
Explore this Story

Explore Carnegie Science

LaPaz Icefield 02342 seen here in thin section under polarized light courtesy of  Carles Moyano-Cambero.
April 15, 2019

Washington, DC—An ancient sliver of the building blocks from which comets formed was discovered encased inside a meteorite like an insect in amber by a Carnegie-led research team. The finding, published by Nature Astronomy, could offer clues to the formation and evolution of our Solar System.

Meteorites were once part of larger bodies, asteroids, which broke up due to collisions in space and survived the trip through the Earth’s atmosphere. Their makeup can vary substantially from meteorite to meteorite, reflecting their varying origin stories in different parent bodies that formed in different parts of the Solar System. Asteroids and comets both formed from the disk

Artist's conception of HD 21749c, the first Earth-sized planet found by NASA's Transiting Exoplanets Survey Satellite (TESS) by Robin Dienel courtesy of Carnegie Institution for Science
April 15, 2019

Pasadena, CA—A nearby system hosts the first Earth-sized planet discovered by NASA’s Transiting Exoplanets Survey Satellite, as well as a warm sub-Neptune-sized world, according to a new paper from a team of astronomers that includes Carnegie’s Johanna Teske, Paul Butler, Steve Shectman, Jeff Crane, and Sharon Wang.

Their work is published in The Astrophysical Journal Letters.

“It’s so exciting that TESS, which launched just about a year ago, is already a game-changer in the planet-hunting business,” said Teske, who is second author on the paper. “The spacecraft surveys the sky and we collaborate with the TESS follow-up

Artist's conception. Credit Rensselaer Polytechnic Institute
February 14, 2019

Washington, DC—Carnegie’s Andrew Steele is a member of the Earth First Origins project, led by Rensselaer Polytechnic Institute’s Karyn Rogers, which has been awarded a $9 million grant by NASA’s Astrobiology Program.

The five-year project seeks to uncover the conditions on early Earth that gave rise to life by identifying, replicating, and exploring how prebiotic molecules and chemical pathways could have formed under realistic early Earth conditions.

The evolution of planet Earth and the emergence of life during its first half-billion years are inextricably linked, with a series of planetwide transformations – formation of the ocean,

Self-portrait of NASA's Curiosity Mars rover on Vera Rubin Ridge with Mount Sharp poking up just behind the vehicle's mast. Image is courtesy of NASA/JPL-Caltech/MSSS Curiosity.
January 31, 2019

Washington, DC—The density of rock layers on the terrain that climbs from the base of Mars’ Gale Crater to Mount Sharp is less dense than expected, according to the latest report on the Red Planet’s geology from a team of scientists including Carnegie’s Shaunna Morrison. Their work is published in Science.

Scientists still aren't sure how this mountain grew inside of the crater, which has been a longstanding mystery. 

One idea is that sediment once filled Gale Crater and was then worn away by millions of years of wind and erosion, excavating the mountain. However, if the crater had been filled to the brim, the material on the bottom, which

April 25, 2019

Gravity, the fundamental force that shaped our planet, varies across the Earth’s surface, both from place to place and over time. For more than three centuries, scientists have made gravity measurements to define the shape of the Earth. Today, very precise measurements of gravity provide crucial information on the mass distribution and transport within the planet. In this talk, Dr. Le Mével will highlight the long history of the determination of the gravity field, from the first field expeditions to the era of satellite measurements, and will discuss the evolution of the instrumentation. She will then show how gravity studies are used to image magmatic systems under

May 23, 2019

In shock-wave experiments, high-powered lasers or guns are used to send a supersonic pressure wave through a sample. This type of dynamic compression can generate immense pressure and allows for the study of impact phenomena in real time. These experiments have wide applications for Earth and planetary science, ranging from understanding the effects of meteorite impacts to studying the structure of planetary interiors. Dynamic experiments are short-lived, generally having a duration of tens of billionths of a second. This requires the development of ultrafast experiments. In this talk, Tracy will review new results using high-intensity pulsed x-rays to examine the crystal structure of

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the Hangay in central Mongolia to better understand the origin of high topography in continental interiors.

This work focuses on characterizing the physical properties and structure of the lithosphere and sublithospheric mantle, and the timing, rate, and pattern of surface uplift in the Hangay. They are carrying out studies in geomorphology, geochronology, thermochronology, paleoaltimetry,

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these

Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's ancient geodynamic processes.

Shirey’s past, current, and future studies reflect the diversity of continental rocks, encompassing a range of studies that include rocks formed anywhere from the deep mantle to the surface crust. His work spans a wide range of geologic settings such as volcanic rocks in continental rifts (giant crustal breaks where continents split apart), ancient and

Peter van Keken studies the thermal and chemical evolution of the Earth. In particularly he looks at the causes and consequences of plate tectonics; element modeling of mantle convection,  and the dynamics of subduction zones--locations where one tectonic plate slides under another. He also studies mantle plumes; the integration of geodynamics with seismology; geochemistry and mineral physics. He uses parallel computing and scientific visualization in this work.

He received his BS and Ph D from the University of Utrecht in The Netherlands. Prior to joining Carnegie he was on the faculty of the University of Michigan.

Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes—atomic variants of elements with the same number of protons but different numbers of neutrons. Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or fingerprints, of the oxygen isotopes 16O, 17O, and 18O. Weathering, ground water, and direct deposition of atmospheric aerosols change the ratios of the isotopes in a rock revealing a lot about the past climate.

Douglas Rumble’s research is centered on these three stable isotopes of oxygen and the four stable isotopes of sulfur 32S , 33S , 34S, and 36S. In addition to

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive