Washington, DC — Molecules containing large chains of carbon and hydrogen--the building blocks of all life on Earth--have been the targets of missions to Mars from Viking to the present day. While...
Explore this Story
Washington, D.C.— In the search for Earth-like planets, it is helpful to look for clues and patterns that can help scientist narrow down the types of systems where potentially habitable planets are...
Explore this Story
Washington, D.C—Geochemist Richard Carlson of Carnegie’s Department of Terrestrial Magnetism has been elected a member of the National Academy of...
Explore this Story
Washington, D.C. — Scientists have long speculated about why there is a large change in the strength of rocks that lie at the boundary between two layers immediately under Earth’s crust: the...
Explore this Story
Washington, D.C.—On March 17, the tiny MESSENGER spacecraft completed its primary mission to orbit and observe the planet Mercury for one Earth-year. The bounty of surprises from the mission has...
Explore this Story
Washington, D.C.— Seawater circulation pumps hydrogen and boron into the oceanic plates that make up the seafloor, and some of this seawater remains trapped as the plates descend into the mantle at...
Explore this Story
Washington, D.C.— An international team of scientists led by Carnegie’s Guillem Anglada-Escudé and Paul Butler has discovered a potentially habitable super-Earth orbiting a nearby star. The star is a...
Explore this Story

Pages

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of...
Explore this Project
Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that...
Meet this Scientist
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
You May Also Like...
Washington, DC — Molecules containing large chains of carbon and hydrogen--the building blocks of all life on Earth--have been the targets of missions to Mars from Viking to the present day. While...
Explore this Story
Brown dwarfs are smaller than stars, but more massive than giant planets. As such, they provide a natural link between astronomy and planetary science. However, they also show incredible variation...
Explore this Story
A team of Carnegie scientists has discovered three giant planets in a binary star system composed of stellar ''twins'' that are also effectively siblings of our Sun. One star hosts...
Explore this Story

Explore Carnegie Science

LaPaz Icefield 02342 seen here in thin section under polarized light courtesy of  Carles Moyano-Cambero.
April 15, 2019

Washington, DC—An ancient sliver of the building blocks from which comets formed was discovered encased inside a meteorite like an insect in amber by a Carnegie-led research team. The finding, published by Nature Astronomy, could offer clues to the formation and evolution of our Solar System.

Meteorites were once part of larger bodies, asteroids, which broke up due to collisions in space and survived the trip through the Earth’s atmosphere. Their makeup can vary substantially from meteorite to meteorite, reflecting their varying origin stories in different parent bodies that formed in different parts of the Solar System. Asteroids and comets both formed from the disk

Artist's conception of HD 21749c, the first Earth-sized planet found by NASA's Transiting Exoplanets Survey Satellite (TESS) by Robin Dienel courtesy of Carnegie Institution for Science
April 15, 2019

Pasadena, CA—A nearby system hosts the first Earth-sized planet discovered by NASA’s Transiting Exoplanets Survey Satellite, as well as a warm sub-Neptune-sized world, according to a new paper from a team of astronomers that includes Carnegie’s Johanna Teske, Paul Butler, Steve Shectman, Jeff Crane, and Sharon Wang.

Their work is published in The Astrophysical Journal Letters.

“It’s so exciting that TESS, which launched just about a year ago, is already a game-changer in the planet-hunting business,” said Teske, who is second author on the paper. “The spacecraft surveys the sky and we collaborate with the TESS follow-up

Artist's conception. Credit Rensselaer Polytechnic Institute
February 14, 2019

Washington, DC—Carnegie’s Andrew Steele is a member of the Earth First Origins project, led by Rensselaer Polytechnic Institute’s Karyn Rogers, which has been awarded a $9 million grant by NASA’s Astrobiology Program.

The five-year project seeks to uncover the conditions on early Earth that gave rise to life by identifying, replicating, and exploring how prebiotic molecules and chemical pathways could have formed under realistic early Earth conditions.

The evolution of planet Earth and the emergence of life during its first half-billion years are inextricably linked, with a series of planetwide transformations – formation of the ocean,

Self-portrait of NASA's Curiosity Mars rover on Vera Rubin Ridge with Mount Sharp poking up just behind the vehicle's mast. Image is courtesy of NASA/JPL-Caltech/MSSS Curiosity.
January 31, 2019

Washington, DC—The density of rock layers on the terrain that climbs from the base of Mars’ Gale Crater to Mount Sharp is less dense than expected, according to the latest report on the Red Planet’s geology from a team of scientists including Carnegie’s Shaunna Morrison. Their work is published in Science.

Scientists still aren't sure how this mountain grew inside of the crater, which has been a longstanding mystery. 

One idea is that sediment once filled Gale Crater and was then worn away by millions of years of wind and erosion, excavating the mountain. However, if the crater had been filled to the brim, the material on the bottom, which

April 25, 2019

Gravity, the fundamental force that shaped our planet, varies across the Earth’s surface, both from place to place and over time. For more than three centuries, scientists have made gravity measurements to define the shape of the Earth. Today, very precise measurements of gravity provide crucial information on the mass distribution and transport within the planet. In this talk, Dr. Le Mével will highlight the long history of the determination of the gravity field, from the first field expeditions to the era of satellite measurements, and will discuss the evolution of the instrumentation. She will then show how gravity studies are used to image magmatic systems under

May 23, 2019

In shock-wave experiments, high-powered lasers or guns are used to send a supersonic pressure wave through a sample. This type of dynamic compression can generate immense pressure and allows for the study of impact phenomena in real time. These experiments have wide applications for Earth and planetary science, ranging from understanding the effects of meteorite impacts to studying the structure of planetary interiors. Dynamic experiments are short-lived, generally having a duration of tens of billionths of a second. This requires the development of ultrafast experiments. In this talk, Tracy will review new results using high-intensity pulsed x-rays to examine the crystal structure of

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000 Northern Hemisphere stars with the Keck telescope in Hawaii and the UCO Lick Observatory telescope in California, and 300 Southern Hemisphere stars with the Anglo-Australian telescope in New South Wales, Australia. The remaining Southern Hemisphere stars are being surveyed with Carnegie's new Magellan telescopes in Chile. By 2010 the researchers hope to have completed their planetary

Carnegie scientists participate in NASA's Kepler missions, the first mission capable of finding Earth-size planets around other stars. The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense excitement and popular interest surrounding the discovery of hundreds of planets orbiting other stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas giants, hot-super-Earths in short period orbits, and ice giants.

The challenge now is to find terrestrial planets (those one half to twice the size of the Earth), especially those in the habitable zone of their stars where liquid water and possibly life might exist.

Andrew Steele joins the Rosetta team as a co-investigator working on the COSAC instrument aboard the Philae lander (Fred Goesmann Max Planck Institute - PI). On 12 November 2014 the Philae system will be deployed to land on the comet and begin operations. Before this, several analyses of the comet environment are scheduled from an approximate orbit of 10 km from the comet. The COSAC instrument is a Gas Chromatograph Mass Spectrometer that will measure the abundance of volatile gases and organic carbon compounds in the coma and solid samples of the comet.

Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental crust.

  Most all of the chemical diversity in the universe comes from the nuclear reactions inside stars, in a process called nucleosynthesis. To answer his questions, Carlson developes novel procedures using instruments called mass spectrometers to make precise measurements of isotopes--atoms of an element with different numbers of neutrons--of Chromium (Cr), strontium (Sr),

Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s inner core structure; core-mantle coupling; tectonic-volatile cycling; orbital migration—how Earth’s orbit moves—and tidal dissipation—the dissipation of tidal forces between two closely orbiting bodies. He is also interested in planetary interiors, dynamos, upper planetary atmospheres and exoplanets—planets orbiting other stars. He uses large-