Washington, DC— New work from an international team of researchers including Carnegie’s Lara Wagner improves our understanding of the geological activity that is thought to have formed...
Explore this Story
Tiny beads of volcanic glass found on the lunar surface during the Apollo missions are a sign that fire fountain eruptions took place on the Moon’s surface. Now, scientists from Brown...
Explore this Story
New work from an international team of researchers including Carnegie’s Lara Wagner improves our understanding of the geological activity that is thought to have formed the Rocky Mountains. It...
Explore this Story
Washington, DC— New work from Carnegie’s Alan Boss offers a potential solution to a longstanding problem in the prevailing theory of how rocky planets formed in our own Solar System, as...
Explore this Story
New work from Carnegie’s Alan Boss offers a potential solution to a longstanding problem in the prevailing theory of how rocky planets formed in our own Solar System, as well as in others. The...
Explore this Story
Washington, DC—The interiors of several of our Solar System’s planets and moons are icy, and ice has been found on distant extrasolar planets, as well.  But these bodies aren’t...
Explore this Story
The interiors of several of our Solar System’s planets and moons are icy, and ice has been found on distant extrasolar planets, as well.  But these bodies aren’t filled with the...
Explore this Story
Washington, DC— The matter that makes up distant planets and even-more-distant stars exists under extreme pressure and temperature conditions. This matter includes members of a family of seven...
Explore this Story

Pages

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance,...
Explore this Project
Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the...
Explore this Project
Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s...
Meet this Scientist
With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant...
Meet this Scientist
Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature...
Meet this Scientist
You May Also Like...
Washington, D.C.— Linda Elkins-Tanton, director of the Department of Terrestrial Magnetism, is resigning her position at Carnegie, effective May 9, 2014. She has accepted a position as the director...
Explore this Story
Washington, DC— New work from Carnegie’s Peter Driscoll suggests Earth’s ancient magnetic field was significantly different than the present day field, originating from several poles rather than the...
Explore this Story
Erik Hauri, who studies how planetary processes affect the chemistry of the Earth, Moon and other objects, was made a fellow of both the Geochemical Society and European Association of Geochemistry.
Explore this Story

Explore Carnegie Science

July 15, 2019

A $2.7 million multi-disciplinary, multi-institutional NSF-Frontiers of Earth Science grant has been awarded to a team led by Carnegie’s Lara Wagner to study an active flat slab in Colombia. A flat slab is produced when a tectonic plate descends to depths of about 30 to 60 miles (~50-100 km) then flattens and travels horizontally for hundreds of miles before descending farther into Earth’s mantle. Flat slabs are unlike standard subduction, in which a tectonic plate descends more steeply beneath another plate directly into the Earth. 

Because flat slabs travel horizontally directly beneath the overriding continents for hundreds of miles, they have more extensive

The planet Earth on April 17, 2019, courtesy NOAA/NASA EPIC Team.
June 3, 2019

Washington, DC—The first minerals to form in the universe were nanocrystalline diamonds, which condensed from gases ejected when the first generation of stars exploded. Diamonds that crystallize under the extreme pressure and temperature conditions deep inside of Earth are more typically encountered by humanity. What opportunities for knowledge are lost when mineralogists categorize both the cosmic travelers and the denizens of deep Earth as being simply “diamond”?

Could a new classification system that accounts for minerals’ distinct journeys help us better understand mineralogy as a process of universal and planetary evolution?

The current system

May 16, 2019

The Office of the President has selected two new Carnegie Venture Grants. Peter Driscoll of the Department of Terrestrial Magnetism and Sally June Tracy of the Geophysical Laboratory were awarded a venture grant for their proposal Carbon-rich Super-Earths: Constraining Internal Structure from Dynamic Compression Experiments. Plant Biology’s Sue Rhee and Global Ecology’s Joe Berry and Jen Johnson were awarded a Venture Grant for their project Thermo-adaptation of Photosynthesis in Extremophilic Desert Plants.

Carnegie Science Venture Grants ignore conventional boundaries and bring together cross-disciplinary researchers with fresh eyes to explore different questions.

Artist’s impression of the surface of the planet Proxima b courtesy of ESO/M. Kornmesser.
May 1, 2019

Washington, DC—Which of Earth’s features were essential for the origin and sustenance of life? And how do scientists identify those features on other worlds?

A team of Carnegie investigators with array of expertise ranging from geochemistry to planetary science to astronomy published this week in Science an essay urging the research community to recognize the vital importance of a planet’s interior dynamics in creating an environment that’s hospitable for life.

With our existing capabilities, observing an exoplanet’s atmospheric composition will be the first way to search for signatures of life elsewhere. However, Carnegie’s

No content in this section.

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

CALL FOR PROPOSALS

Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas.

Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to foster entirely new directions of research by teams of scientists that ignore departmental boundaries. Up to six adventurous investigations may be funded each year. The period of the award is two

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young. None of the accepted paradigms explain why the magmatic and tectonic activity extend so far east of the North American plate margin. By applying numerous techniques ranging from geochemistry and petrology to active and passive seismic imaging to geodynamic modeling, the researchers examine an assemblage of new data that will provide key information about the roles of lithosphere

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from

Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and chemical processes can cause isotopes—atoms of an element with different numbers of neutrons-- to separate (called isotopic fractionation). Experimental petrology is a lab-based approach to increasing the pressure and temperature of materials to simulate conditions in the interior Earth or other planetary bodies.

Rocks and meteorites consist of isotopes that contain chemical

Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our Solar System, which allow us to understand how the Solar System came to be.

The major planets in our Solar System travel around the Sun in fairly circular orbits and on similar planes. However, since the discovery of wildly varying planetary systems around other stars, and given our increased understanding about small, primordial bodies in our celestial neighborhood, the notion that

Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature superconductor under pressure—a state predicted by theory, but thus far unattained—to discover new superconductors, and to learn what happens to materials in Earth’s deep interior where pressure and temperature conditions are extreme. 

Recently, a team including Struzhkin was the first to discover the conditions under which nickel oxide can turn into an electricity-