Astronomy Stories
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, M. Kornmesser
Pasadena, CA— Quasars are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They shine so brightly that they are often referred to as beacons and are among...
Explore this Story
Washington, DC— Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe. While many dwarf...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Texas A&M,
Pasadena, CA—An international team of astronomers, including Carnegie’s Eric Persson, has charted the rise and fall of galaxies over 90 percent of cosmic history. Their work, which...
Explore this Story
Johanna Teske was awarded the third Postdoctoral Innovation and Excellence (PIE) Award, which is made through nominations from the department directors and chosen by the Office of the President. She...
Explore this Story
UGC1382
Carnegie’s Mark Seibert, Barry Madore, Jeff Rich, and team have discovered that what was believed since the 1960s to be a relatively boring, small elliptical galaxy ...
Explore this Story
Pasadena, CA—Astronomers have believed since the 1960s that a galaxy dubbed UGC 1382 was a relatively boring, small elliptical galaxy. Ellipticals are the most common type of galaxy and lack...
Explore this Story
Pasadena, CA— The Astronomical Society of the Pacific (ASP) has announced that the Carnegie Observatories’ postdoctoral associate Rachael Beaton will receive the 2016 Robert J. Trumpler...
Explore this Story
Washington, DC— Brown dwarfs are sometimes called failed stars. They’re stars’ dim, low-mass siblings and they fade in brightness over time. They’re fascinating to astronomers...
Explore this Story

Pages

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
Rebecca Bernstein combines observational astronomy with developing new instruments and techniques to study her objects of interest. She focuses on formation and evolution of galaxies by studying the chemistry of objects called extra galactic globular clusters—old, spherical compact groups of...
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
The earliest galaxies are those that are most distant. Staff associate Dan Kelson is interested in how these ancient relics evolved. The latest generation of telescopes and advanced spectrographs—instruments that analyze light to determine properties of celestial objects—allow...
Meet this Scientist
You May Also Like...
Pasadena, CA —The board of directors of the Giant Magellan Telescope Organization (GMTO) has informed the National Science Foundation (NSF) that they will not participate in an upcoming funding...
Explore this Story
Washington, D.C.—A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist...
Explore this Story
AudioPasadena, CA—Quasars are supermassive black holes that live at the center of distant massive galaxies. They shine as the most luminous beacons in the sky across the entire electromagnetic...
Explore this Story

Explore Carnegie Science

Earth's Moon, public domain image
January 23, 2019

Pasadena, CA— “Can moons have moons?”

This simple question—asked by the four-year old son of Carnegie’s Juna Kollmeier—started it all.  Not long after this initial bedtime query,  Kollmeier was coordinating a program at the Kavli Institute for Theoretical Physics (KITP)  on the Milky Way while her one-time college classmate Sean Raymond of Université de Bordeaux was attending a parallel KITP program on the dynamics of Earth-like planets.   After discussing this very simple question at a seminar, the two joined forces to solve it.  Their findings are the basis of a paper published in Monthly Notices

December 14, 2018

Pasadena, CA— Miguel Roth, director of Carnegie’s Las Campanas Observatory in Chile from 1990 to 2014 and the current representative of the Giant Magellan Telescope Organization (GMTO) in Chile was awarded the Bernardo O’Higgins Order by the Chilean Foreign Affairs Ministry in Santiago today. The honor is in recognition “of his contribution to the development of astronomy in Chile, and for inspiring appreciation and knowledge of astronomy among students and people of all ages.”

The award is the highest civilian honor for non-Chileans. O’Higgins was one of the founders of the Chilean Republic. The award was established in 1965 to recognize

An artist’s conception of a type Ia supernova exploding, courtesy of ESO.
December 11, 2018

Pasadena, CA—New work from the Carnegie Supernova Project provides the best-yet calibrations for using type Ia supernovae to measure cosmic distances, which has implications for our understanding of how fast the universe is expanding and the role dark energy may play in driving this process. Led by Carnegie astronomer Chris Burns, the team’s findings are published in The Astrophysical Journal.  

Type Ia supernovae are fantastically bright stellar phenomena. They are violent explosions of a white dwarf—the crystalline remnant of a star that has exhausted its nuclear fuel—which is part of a binary system with another star.

In addition to being

Pan-STARRS image showing the host galaxy of the newly discovered supernova ASASSN-18bt
November 29, 2018

Pasadena, CA—A supernova discovered by an international group of astronomers including Carnegie’s Tom Holoien and Maria Drout, and led by University of Hawaii’s Ben Shappee, provides an unprecedented look at the first moments of a violent stellar explosion. The light from the explosion's first hours showed an unexpected pattern, which Carnegie's Anthony Piro analyzed to reveal that the genesis of these phenomena is even more mysterious than previously thought.

Their findings are published in a trio of papers in The Astrophysical Journal and The Astrophysical Journal Letters. (You can read them here, here, and here.)

Type Ia supernovae are

No content in this section.

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

Mark Phillips is the Las Campanas Observatory (LCO) Director Emeritus. From 2006 to 2017 Phillips served as the Associate Director for Magellan, and from 2014 to 2017 he was the interim LCO Director. He is a world-renowned supernova expert. Most stars die quietly by cooling down and “turning off” when they have exhausted their nuclear fuel. But, a few stars end in a gigantic thermonuclear explosion known as a supernova. These objects remain extremely bright for a few weeks, sometimes outshining the galaxies in which they reside. Their extreme brightness at maximum makes them potentially powerful “standard candles”—baselines for probing

Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile, and the first of two cameras for the Magellan Baade telescope. Magellan consortium astronomers use the Baade camera for various IR-imaging projects, while his group focuses on distant galaxies and supernovae.

Until recently, it was difficult to find large numbers of galaxies at near-IR wavelengths. But significant advances in the size of IR detector arrays have allowed the Persson group

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-

Staff member emeritus François Schweizer studies galaxy assembly and evolution by observing nearby galaxies, particularly how collisions and mergers affect their properties. His research has added to the awareness that these events are dominant processes in shaping galaxies and determining their stellar and gaseous contents.

When nearby galaxies collide and merge they yield valuable clues about processes that occurred much more frequently in the younger, distant universe. When two gas-rich galaxies collide, their pervasive interstellar gas gets compressed, clumps into dense clouds, and fuels the sudden birth of billions of new stars and thousands of star clusters.