Astronomy Stories
Pasadena, CA—The Big Bang produced lots of hydrogen and helium and a smidgen of lithium. All heavier elements found on the periodic table have been produced by stars over the last 13.7 billion years...
Explore this Story
Pasadena, CA – The board of directors of the Giant Magellan Telescope Organization (GMTO) has informed the National Science Foundation (NSF) that they will not participate in an upcoming funding...
Explore this Story
On Friday, March 23, the first blast (Big Bang Event) occurred at Las Campanas Peak in Chile, at high noon US Eastern Daylight Time. It marked the beginning of mountain leveling and site preparation...
Explore this Story
Pasadena, CA--Astronomers have begun to blast 3 million cubic feet of rock from a mountaintop in the Chilean Andes to make room for what will be the world’s largest telescope when completed near the...
Explore this Story
Pasadena, CA--A team of astronomers has discovered the most distant cluster of red galaxies ever observed using FourStar, a new and powerful near-infrared camera on the 6.5m Magellan Baade Telescope...
Explore this Story
Pasadena, CA— Eta Carinae, one of the most massive stars in our Milky Way galaxy, unexpectedly increased in brightness in the 19th century. For ten years in the mid-1800s it was the second-brightest...
Explore this Story
Washington, D.C.— An international team of scientists led by Carnegie’s Guillem Anglada-Escudé and Paul Butler has discovered a potentially habitable super-Earth orbiting a nearby star. The star is a...
Explore this Story
Washington, D.C.—On January 14, 2012, the second 8.4-meter (27.6 ft) diameter mirror for the Giant Magellan Telescope (GMT) will be cast inside a rotating furnace at the University of Arizona’s...
Explore this Story

Pages

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in...
Explore this Project
Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017. Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He...
Meet this Scientist
With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant...
Meet this Scientist
Director Emeritus, George Preston has been deciphering the chemical evolution of stars in our Milky Way for a quarter of a century. He and Steve Shectman started this quest using a special technique to conduct a needle-in-the-haystack search for the few, first-generation stars, whose chemical...
Meet this Scientist
You May Also Like...
Pasadena, CA—For only the second time in history, a team of scientists--including Carnegie's Michele Fumagalli--have discovered an extremely rare triple quasar system. Their work is published by...
Explore this Story
NPR covers the discovery of the most-luminous supernova by a team of astronomers, including Ben Shappee. More
Explore this Story
In the days after the death of Stephen Hawking, some of our scientists reflected on meeting him, on his contributions to science and science communication, and his impact on humanity.  ALAN BOSS,...
Explore this Story

Explore Carnegie Science

Fotografía de Yuri Beletsky, cortesía de la Carnegie Institution for Science.
April 27, 2020

Pasadena, California— El universo está lleno de miles de millones de galaxias—pero su distribución en el espacio está lejos de ser uniforme. ¿Por qué vemos tantas estructuras en el universo hoy y cómo se formó y creció todo?

Una encuesta de decenas de miles de galaxias, realizada durante 10 años utilizando el telescopio de Magallanes Baade perteneciente al Observatorio Las Campanas de Carnegie en Chile, proporcionó un enfoque para responder a este misterio fundamental. Los resultados, liderados por Daniel Kelson, de Carnegie, fueron publicados en Monthly Notices of the Royal Astronomical Society.

The Magellan telescopes at LCO by Yuri Beletsky.
April 27, 2020

Pasadena, CA— The universe is full of billions of galaxies—but their distribution across space is far from uniform. Why do we see so much structure in the universe today and how did it all form and grow? 

A 10-year survey of tens of thousands of galaxies made using the Magellan Baade Telescope at Carnegie’s Las Campanas Observatory in Chile provided a new approach to answering this fundamental mystery. The results, led by Carnegie’s Daniel Kelson, are published in Monthly Notices of the Royal Astronomical Society. 

“How do you describe the indescribable?” asks Kelson. “By taking an entirely new approach to the problem.

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

 Illustration of DS Tuc AB by M. Weiss, CfA.
March 9, 2020

Pasadena, CA— A new kind of astronomical observation helped reveal the possible evolutionary history of a baby Neptune-like exoplanet.

To study a very young planet called DS Tuc Ab, a Harvard & Smithsonian Center for Astrophysics-led team that included six Carnegie astronomers—Johanna Teske, Sharon Wang, Stephen Shectman, Paul Butler, Jeff Crane, and Ian Thompson—developed a new observational modeling tool. Their work will be published in The Astrophysical Journal Letters and represents the first time the orbital tilt of a planet younger than 45 million years—or about 1/100th the age of the Solar System—has been measured.

“A

No content in this section.

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy evolution. Blanc conducts a series of research projects on the properties of young and distant galaxies, the large-scale structure of the universe, the nature of Dark Energy—the mysterious repulsive force, the process of star formation at galactic scales, and the measurement of chemical abundances in galaxies.

To conduct this work, he takes a multi-wavelength approach including

Anthony Piro is the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics at the Carnegie Observatories. He is a theoretical astrophysicist studying compact objects, astrophysical explosions, accretion flows, and stellar dynamics. His expertise is in nuclear physics, thermodynamics, condensed matter physics, General Relativity, and fluid and magneto-hydrodanmics. He uses this background  to predict new observational phenomena as well as to understand the key underlying physical mechanisms responsible for current observations. He uses a combination of analytic and simple numerical models to build physical intuition for complex phenomena.

Piro recieved his 

Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile, and the first of two cameras for the Magellan Baade telescope. Magellan consortium astronomers use the Baade camera for various IR-imaging projects, while his group focuses on distant galaxies and supernovae.

Until recently, it was difficult to find large numbers of galaxies at near-IR wavelengths. But significant advances in the size of IR detector arrays have allowed the Persson group

The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating about in intergalactic space, largely in the form of ionized hydrogen gas.

 Michael Rauch is interested in all aspects of the intergalactic medium. He uses large telescopes, like the Magellans, to take spectra—light that reveals the chemical makeup of distant objects— of background quasars, which are highly energetic and extremely remote. He is looking for evidence of