Astronomy Stories
An artist’s conception of a type Ia supernova exploding, courtesy of ESO.
Pasadena, CA—New work from the Carnegie Supernova Project provides the best-yet calibrations for using type Ia supernovae to measure cosmic distances, which has implications for our...
Explore this Story
Pan-STARRS image showing the host galaxy of the newly discovered supernova ASASSN-18bt
Pasadena, CA—A supernova discovered by an international group of astronomers including Carnegie’s Tom Holoien and...
Explore this Story
SDSS/Caltech/Keck
Pasadena, CA—Carnegie’s Anthony Piro was part of a Caltech-led team of astronomers who observed the peculiar death of a massive...
Explore this Story
John Graham
Washington, DC—Carnegie astronomer John Graham—who also served during different periods as both Vice President and Secretary of the American Astronomical Society—died at home in...
Explore this Story
Washington, D.C.—Observatories NASA Hubble Postdoctoral Fellow Maria Drout will receive the tenth Postdoctoral Innovation and Excellence Award (PIE). These awards are made through nominations...
Explore this Story
Pasadena, CA—What happens when a star behaves like it exploded, but it’s still there? About 170 years ago, astronomers witnessed a major outburst by Eta Carinae, the brightest known star...
Explore this Story
This artist’s impression shows the temperate planet Ross 128 b, with its red dwarf parent star in the background. It is provided courtesy of ESO/M. Kornmesser.
Pasadena, CA—Last autumn, the world was excited by the discovery of an exoplanet called Ross 128 b, which is just 11 light years away from Earth....
Explore this Story
An artist’s conception of a radio jet spewing out fast-moving material from the newly discovered quasar. Artwork by Robin Dienel, courtesy of Carnegie Institution for Science.
Pasadena, CA—Carnegie’s Eduardo Bañados led a team that found a quasar with the brightest radio emission ever observed in the early universe, due to it spewing out a jet of...
Explore this Story

Pages

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse...
Meet this Scientist
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
You May Also Like...
Washington, D.C.—A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist...
Explore this Story
A team of astronomers led by Carnegie’s Eduardo Bañados used Carnegie’s Magellan telescopes to discover the most-distant supermassive black hole ever observed. It resides in a...
Explore this Story
Pasadena, CA— Astronomer and instrumentation expert Stephen Shectman of the Carnegie Observatories has been selected to receive the Maria and Eric Muhlmann Award from the Astronomical Society of the...
Explore this Story

Explore Carnegie Science

Decker French
July 24, 2019

Pasadena, CA— Carnegie’s K. Decker French was recognized by the Astronomical Society of the Pacific with its Robert J. Trumpler Award, which is presented to a recent Ph.D. graduate “whose research is considered unusually important to astronomy.” French completed her doctorate at the University of Arizona Tucson in 2017 and is currently a Hubble Fellow at the Carnegie Observatories.

Her research focuses on a radio survey of the gas clouds within galaxies that have recently ended the star-forming phase of their evolution.  The lack of star formation in these galaxies has long been assumed to be caused by a depletion of the cold, dense molecular gases

Vera measuring spectra with DTM measuring engine, courtesy of Carnegie Science.
July 24, 2019

Washington, DC—The House approved yesterday a bill to name the Large Synoptic Survey Telescope in honor of late Carnegie scientist Vera Rubin, who confirmed the existence of dark matter.

Rubin received the National Medal of Science for her research on how stars orbit their galactic centers. She revealed that stars at varying distances from the center of a spiral galaxy orbit at the same speed, rather than at decreasing speeds away from the center, providing undeniable evidence that each galaxy is embedded in a halo of dark matter holding its mass together.

She died in December 2016.

“Vera demonstrated intellectual courage and a tireless commitment to

An image of the Hubble Space Telescope floating against the background of space courtesy of NASA.
July 16, 2019

Pasadena, CA—A team of collaborators from Carnegie and the University of Chicago used red giant stars that were observed by the Hubble Space Telescope to make an entirely new measurement of how fast the universe is expanding, throwing their hats into the ring of a hotly contested debate. Their result—which falls squarely between the two previous, competing values—will be published in The Astrophysical Journal.

Nearly a century ago, Carnegie astronomer Edwin Hubble discovered that the universe has been growing continuously since it exploded into being during the Big Bang. But precisely how fast it’s moving—a value termed the Hubble constant in his

This cartoon courtesy of Anthony Piro illustrates three possibilities for the origin of the mysterious hydrogen emissions from the Type IA supernova called ASASSN-18tb that were observed by the Carnegie astronomers.
May 7, 2019

Pasadena, CA—Detection of a supernova with an unusual chemical signature by a team of astronomers led by Carnegie’s Juna Kollmeier—and including Carnegie’s Nidia Morrell, Anthony Piro, Mark Phillips, and Josh Simon—may hold the key to solving the longstanding mystery that is the source of these violent explosions. Observations taken by the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile were crucial to detecting the emission of hydrogen that makes this supernova, called ASASSN-18tb, so distinctive.   

Their work is published in Monthly Notices of the Royal Astronomical Society.

Type Ia supernovae play a

No content in this section.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

Gwen Rudie

Gwen Rudie studies the chemical and physical properties of very distant galaxies and their surrounding gas in order to further our understanding of the processes that are central to the formation and development of galaxies. Critical to this research is our ability to trace the raw materials of galaxy formation and its biproducts. These clues can be found in the gas that surrounds early galaxies. She is primarily an observational astronomer, working on the analysis and interpretation of high-resolution spectroscopy of distant quasars as well as near-infrared and optical spectroscopy of high-redshift galaxies. In addition to her scientific efforts, she is also the

Distant galaxies offer a glimpse of the universe as it was billions of years ago. Understanding how the Milky Way and other galaxies originated provides a unique perspective on the fundamental physics of cosmology, the invisible dark matter, and  repulsive force of dark energy. Patrick McCarthy uses the facilities at Carnegie’s Las Campanas Observatory to explore the early formation and evolution of galaxies. He is also director of the Giant Magellan Telescope Organization, an international consortium that is building the next generation giant telescope.  

Galaxy formation is driven by the interplay between the large-scale distribution of dark matter—that non

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be

Globular clusters are spherical systems of some 100,000  gravitationally bound stars. They are among the oldest components of our galaxy and are key to understanding the age and scale of the universe. Previous measurements of their distances have compared the characteristics of different types of stars in the solar neighborhood with the same types of stars found in the clusters. However, these measurements have systematic errors, which limit the determination of cluster ages and distances.

 Ian Thompson has a different approach to the problem: using observations of exceedingly rare Detached Eclipsing Binary stars. These systems have two separated stars orbiting each