Astronomy Stories
It isn’t often that our Capital Science Evening speaker hints at soon-to-be-breaking news right from the stage. Tuesday night, Pierre Cox, Director of the Atacama Large Milimiter/submillimeter...
Explore this Story
Fotografía de Yuri Beletsky, cortesía de la Carnegie Institution for Science.
Pasadena, California— El universo está lleno de miles de millones de galaxias—pero su distribución en el espacio está lejos de ser uniforme. ¿Por qué...
Explore this Story
The Magellan telescopes at LCO by Yuri Beletsky.
Pasadena, CA— The universe is full of billions of galaxies—but their distribution across space is far from uniform. Why do we see so much structure in the universe today and how did it...
Explore this Story
Caltech logo
The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with...
Explore this Story
 Illustration of DS Tuc AB by M. Weiss, CfA.
Pasadena, CA— A new kind of astronomical observation helped reveal the possible evolutionary history of a baby Neptune-like exoplanet. To study a very young planet called DS Tuc Ab, a Harvard...
Explore this Story
John Mulchaey
Pasadena, CA—John Mulchaey, Director and Crawford H. Greenewalt Chair of the Carnegie Observatories, was presented with a Humanitarian STAR Award by the honor...
Explore this Story
Washington, DC— Carnegie astronomers Stephen Shectman and Alycia Weinberger were selected for the inaugural class of Fellows of the American Astronomical Society in recognition of their “...
Explore this Story
Vera Rubin, courtesy of the Carnegie Institution for Science
Washington, DC— The Large Synoptic Survey Telescope and its joint funding agencies, the National Science Foundation and Department of Energy, announced Monday that it will be renamed the Vera C...
Explore this Story

Pages

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.  Astronomers have a basic...
Meet this Scientist
Galacticus is not a super hero; it’s a super model used to determine the formation and evolution of the galaxies. Developed by Andrew Benson, the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, it is one of the most advanced models of galaxy formation available. Rather...
Meet this Scientist
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
You May Also Like...
A team of astronomers led by Carnegie’s Meredith MacGregor and Alycia Weinberger detected a massive stellar flare—an energetic explosion of radiation—from the closest star to our...
Explore this Story
Pasadena, CA— A team of astronomers including Carnegie’s Ian Thompson have managed to improve the measurement of the distance to our nearest neighbor galaxy and, in the process, refine an...
Explore this Story
Carnegie astronomer Mark Phillips, interim director of the Las Campanas Observatory, is one of a group of scientists being honored with the Breakthrough Prize in Fundamental Physics. The prize...
Explore this Story

Explore Carnegie Science

Fotografía de Yuri Beletsky, cortesía de la Carnegie Institution for Science.
April 27, 2020

Pasadena, California— El universo está lleno de miles de millones de galaxias—pero su distribución en el espacio está lejos de ser uniforme. ¿Por qué vemos tantas estructuras en el universo hoy y cómo se formó y creció todo?

Una encuesta de decenas de miles de galaxias, realizada durante 10 años utilizando el telescopio de Magallanes Baade perteneciente al Observatorio Las Campanas de Carnegie en Chile, proporcionó un enfoque para responder a este misterio fundamental. Los resultados, liderados por Daniel Kelson, de Carnegie, fueron publicados en Monthly Notices of the Royal Astronomical Society.

The Magellan telescopes at LCO by Yuri Beletsky.
April 27, 2020

Pasadena, CA— The universe is full of billions of galaxies—but their distribution across space is far from uniform. Why do we see so much structure in the universe today and how did it all form and grow? 

A 10-year survey of tens of thousands of galaxies made using the Magellan Baade Telescope at Carnegie’s Las Campanas Observatory in Chile provided a new approach to answering this fundamental mystery. The results, led by Carnegie’s Daniel Kelson, are published in Monthly Notices of the Royal Astronomical Society. 

“How do you describe the indescribable?” asks Kelson. “By taking an entirely new approach to the problem.

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

 Illustration of DS Tuc AB by M. Weiss, CfA.
March 9, 2020

Pasadena, CA— A new kind of astronomical observation helped reveal the possible evolutionary history of a baby Neptune-like exoplanet.

To study a very young planet called DS Tuc Ab, a Harvard & Smithsonian Center for Astrophysics-led team that included six Carnegie astronomers—Johanna Teske, Sharon Wang, Stephen Shectman, Paul Butler, Jeff Crane, and Ian Thompson—developed a new observational modeling tool. Their work will be published in The Astrophysical Journal Letters and represents the first time the orbital tilt of a planet younger than 45 million years—or about 1/100th the age of the Solar System—has been measured.

“A

No content in this section.

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy evolution. Blanc conducts a series of research projects on the properties of young and distant galaxies, the large-scale structure of the universe, the nature of Dark Energy—the mysterious repulsive force, the process of star formation at galactic scales, and the measurement of chemical abundances in galaxies.

To conduct this work, he takes a multi-wavelength approach including

Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy

Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile, and the first of two cameras for the Magellan Baade telescope. Magellan consortium astronomers use the Baade camera for various IR-imaging projects, while his group focuses on distant galaxies and supernovae.

Until recently, it was difficult to find large numbers of galaxies at near-IR wavelengths. But significant advances in the size of IR detector arrays have allowed the Persson group