Astronomy Stories
  Washington, DC—Un grupo de astrónomos del Observatorio Las Campanas, de Carnegie, incluyendo a Mark Phillips y Guillermo Blanc, junto a Miguel Roth de la Organización...
Explore this Story
Washington, DC—A group of astronomers from Carnegie’s Las Campanas Observatory including Mark Phillips and Guillermo Blanc, along with Miguel Roth from the Giant Magellan Telescope...
Explore this Story
Kit Whitten in the plate analysis room. Photo by Cynthia Hunt
Cataloging Reflections by Kit Whitten, Carnegie Observatories Library Intern It is commonly believed that when looking for valuable treasure, the best place to look is the attic—after all,...
Explore this Story
Former Carnegie fellow and current trustee Sandy Faber has been selected to receive the 2018 American Philosophical Society’s Magellanic Premium Medal.  The medal is the nation’s...
Explore this Story
Pasadena, CA—Pomona College junior and returning Carnegie Observatories intern Sal Fu was awarded...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Las Campanas Observatory
La Serena, Chile—Last week, scientists and staff from Carnegie’s Las Campanas Observatory volunteered for Astroday 2018 at a 170-year-old school in the nearby city of Las Serena, the...
Explore this Story
Called the Hubble Ultra Deep Field, this galaxy-studded view represents a "deep" core sample of the universe, cutting across billions of light-years. Courtesy: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team
In the days after the death of Stephen Hawking, some of our scientists reflected on meeting him, on his contributions to science and science communication, and his impact on humanity.  ALAN BOSS...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Roberto Marcos Molar
Washington, DC—A team of astronomers led by Carnegie’s Meredith MacGregor and Alycia Weinberger detected a massive stellar flare—an energetic explosion of radiation—from the...
Explore this Story

Pages

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is...
Explore this Project
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http...
Explore this Project
Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse...
Meet this Scientist
Gwen Rudie
Gwen Rudie studies the chemical and physical properties of very distant galaxies and their surrounding gas in order to further our understanding of the processes that are central to the formation and development of galaxies. Critical to this research is our ability to trace the raw...
Meet this Scientist
Juna Kollmeier’s research is an unusual combination—she is as observationally-oriented theorist making predictions that can be compared to current and future observations. Her primary focus is on the emergence of structure in the universe. She combines cosmological hydrodynamic...
Meet this Scientist
You May Also Like...
In the days after the death of Stephen Hawking, some of our scientists reflected on meeting him, on his contributions to science and science communication, and his impact on humanity.  ALAN BOSS,...
Explore this Story
Pasadena, CA--A team of astronomers has discovered the most distant cluster of red galaxies ever observed using FourStar, a new and powerful near-infrared camera on the 6.5m Magellan Baade Telescope...
Explore this Story
Carnegie's John Mulchaey talks to NPR's Morning Edition about Edwin Hubble's work at the Mount Wilson Obeservatory and his famous Andromeda plates. Read more
Explore this Story

Explore Carnegie Science

Decker French
July 24, 2019

Pasadena, CA— Carnegie’s K. Decker French was recognized by the Astronomical Society of the Pacific with its Robert J. Trumpler Award, which is presented to a recent Ph.D. graduate “whose research is considered unusually important to astronomy.” French completed her doctorate at the University of Arizona Tucson in 2017 and is currently a Hubble Fellow at the Carnegie Observatories.

Her research focuses on a radio survey of the gas clouds within galaxies that have recently ended the star-forming phase of their evolution.  The lack of star formation in these galaxies has long been assumed to be caused by a depletion of the cold, dense molecular gases

Vera measuring spectra with DTM measuring engine, courtesy of Carnegie Science.
July 24, 2019

Washington, DC—The House approved yesterday a bill to name the Large Synoptic Survey Telescope in honor of late Carnegie scientist Vera Rubin, who confirmed the existence of dark matter.

Rubin received the National Medal of Science for her research on how stars orbit their galactic centers. She revealed that stars at varying distances from the center of a spiral galaxy orbit at the same speed, rather than at decreasing speeds away from the center, providing undeniable evidence that each galaxy is embedded in a halo of dark matter holding its mass together.

She died in December 2016.

“Vera demonstrated intellectual courage and a tireless commitment to

An image of the Hubble Space Telescope floating against the background of space courtesy of NASA.
July 16, 2019

Pasadena, CA—A team of collaborators from Carnegie and the University of Chicago used red giant stars that were observed by the Hubble Space Telescope to make an entirely new measurement of how fast the universe is expanding, throwing their hats into the ring of a hotly contested debate. Their result—which falls squarely between the two previous, competing values—will be published in The Astrophysical Journal.

Nearly a century ago, Carnegie astronomer Edwin Hubble discovered that the universe has been growing continuously since it exploded into being during the Big Bang. But precisely how fast it’s moving—a value termed the Hubble constant in his

This cartoon courtesy of Anthony Piro illustrates three possibilities for the origin of the mysterious hydrogen emissions from the Type IA supernova called ASASSN-18tb that were observed by the Carnegie astronomers.
May 7, 2019

Pasadena, CA—Detection of a supernova with an unusual chemical signature by a team of astronomers led by Carnegie’s Juna Kollmeier—and including Carnegie’s Nidia Morrell, Anthony Piro, Mark Phillips, and Josh Simon—may hold the key to solving the longstanding mystery that is the source of these violent explosions. Observations taken by the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile were crucial to detecting the emission of hydrogen that makes this supernova, called ASASSN-18tb, so distinctive.   

Their work is published in Monthly Notices of the Royal Astronomical Society.

Type Ia supernovae play a

No content in this section.

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

Galacticus is not a super hero; it’s a super model used to determine the formation and evolution of the galaxies. Developed by Andrew Benson, the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, it is one of the most advanced models of galaxy formation available.

Rather than building his model around observational data, Benson’s Galacticus relies on known laws of physics and the so-called N-body problem, which predicts the motions of celestial bodies that interact gravitationally in groups. Galacticus’ now an open- source model produces results as stunning 3-D videos.

Some 80% of the matter in the universe cannot be seen. This unseen

The earliest galaxies are those that are most distant. Staff associate Dan Kelson is interested in how these ancient relics evolved. The latest generation of telescopes and advanced spectrographs—instruments that analyze light to determine properties of celestial objects—allow astronomers to accurately measure enormous numbers of distant galaxies. Kelson uses the Magellan 6.5-meter telescopes and high-resolution imaging from the Hubble Space Telescope to study distant galaxies.His observations of their masses, sizes and morphologies allow him to directly measure their stars' aging to infer their formation history. Kelson is the principal investigator of the Carnegie-

Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the pace and character of star birth, and how large galaxies form from earlier, smaller systems.

Dressler is also intricately involved in instrumentation. He led the effort for the Inamori Magellan Areal Spectrogrph (IMACS), a wide-field imager and multi-object spectrograph which became operational in 2003 on the Baade telescope at Carnegie’s Las Campanas Observatory. Spectrographs

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar