Astronomy Stories
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory
Pasadena, CA— A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date, according to new...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA, Larry Nittler
Washington, DC— Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it...
Explore this Story
National Harbor, MD—How far away is that galaxy?  Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Sloan Digital Sky Survey, SDSS-IV
National Harbor, MD—Astronomers with the Sloan Digital Sky Survey (SDSS) have learned that the chemical composition of a star can exert unexpected influence on...
Explore this Story
Pasadena, CA— A team of astronomers led by Carnegie’s Eduardo Bañados used Carnegie’s Magellan telescopes to discover the most-distant supermassive black hole ever observed....
Explore this Story
SN2015J, a very bright and peculiar supernova, which initially did not have a certain home, now has received its happy ending.  Discovered on April 27, 2015, by the Siding Springs Observatory in...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Robin Dienel, SDSS-V, Sloan Digital Sky Survey
Pasadena, CA— The next generation of the Sloan Digital Sky Survey (SDSS-V), directed by Carnegie’s Juna Kollmeier, will move forward with mapping the entire sky following a $16 million...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory, ESO/M. Kornmesser
Pasadena, CA— It’s the celestial equivalent of a horror movie villain—a star that wouldn’t stay dead. An international team of astronomers including Carnegie’s Nick...
Explore this Story

Pages

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
Gwen Rudie
Gwen Rudie studies the chemical and physical properties of very distant galaxies and their surrounding gas in order to further our understanding of the processes that are central to the formation and development of galaxies. Critical to this research is our ability to trace the raw...
Meet this Scientist
Like some other Carnegie astronomers, staff associate Jeffrey Crane blends science with technology. His primary interests are instrumentation, the Milky Way and the neighboring Local Group of galaxies, in addition to extrasolar planets. In 2004, then-research associate Crane joined Steve Shectman,...
Meet this Scientist
The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating...
Meet this Scientist
You May Also Like...
"The Moon needs no introduction ... To the layman, not versed in astrophysics, the Moon is the most-conspicuous object in the night sky and the rival of all heavenly objects, even including the Sun...
Explore this Story
Carnegie’s Benjamin Shappee is part of a team of scientists, including an Australian amateur astronomer, which discovered a new comet last week. Called the All Sky Automated Survey for...
Explore this Story
Pasadena, CA— New work from a team of scientists including Carnegie’s Josh Simon analyzed the chemical elements in the faintest known galaxy, called Segue 1, and determined that it is effectively a...
Explore this Story

Explore Carnegie Science

 "Blue Snowball" planetary nebula, courtesy of Eric Hsiao.
September 10, 2020

Pasadena, CA—An unusual stellar explosion is shining new light on the origins of a specific subgroup of Type Ia supernovae.

Called LSQ14fmg, the exploding star exhibits certain characteristics that are unlike any other supernova. For example, its brightness increases at an extremely slow rate compared to other Type Ia supernovae. Despite this, it is also one of the brightest explosions in its class.

“Type Ia supernovae are violent, fantastically bright explosions of a white dwarf—the remnant of a star that has exhausted its nuclear fuel—which is part of a binary system with another star,” said Carnegie astronomer Mark Phillips, an expert in

Widmanstatten pattern characteristic of iron meteorites, courtesy of Peng Ni.
August 3, 2020

Washington, DC— Work led by Carnegie’s Peng Ni and Anat Shahar uncovers new details about our Solar System’s oldest planetary objects, which broke apart in long-ago collisions to form iron-rich meteorites.  Their findings reveal that the distinct chemical signatures of these meteorites can be explained by the process of core crystallization in their parent bodies, deepening our understanding of the geochemistry occurring in the Solar System’s youth. They are published by Nature Geoscience.

Many of the meteorites that shot through our planet’s atmosphere and crashed on its surface were once part of larger objects that broke up at some point in our

Phoenix Stellar Stream illustration courtesy of Geraint F. Lewis.
July 29, 2020

Pasadena, CA—A team of astronomers including Carnegie’s Ting Li and Alexander Ji discovered a stellar stream composed of the remnants of an ancient globular cluster that was torn apart by the Milky Way’s gravity 2 billion years ago, when Earth’s most-complex lifeforms were single-celled organisms. This surprising finding, published in Nature, upends conventional wisdom about how these celestial objects form.

Imagine a sphere made up of a million stars bound by gravity and orbiting a galactic core. That’s a globular cluster. The Milky Way is home to about 150 of them, which form a tenuous halo that envelops our galaxy.

But the globular cluster

The du Pont telescope, courtesy Matias del Campo
July 20, 2020

Pasadena, CA— Filling in the most-significant gaps in our understanding of the universe’s history, the Sloan Digital Sky Survey (SDSS) released Sunday a comprehensive analysis of the largest three-dimensional map of the cosmos ever created.

The survey, of which Carnegie is an integral member, has been one of the most successful and influential in the history of astronomy. It operates out of both Apache Point Observatory in New Mexico, home of the survey’s original 2.5-meter telescope, and Carnegie’s Las Campanas Observatory in Chile, where it uses Carnegie’s du Pont telescope.

The new results come from the extended Baryon Oscillation

October 5, 2020

Nearly 100 years ago, Carnegie astronomer Edwin Hubble made two truly revolutionary discoveries: First that our Milky Way was only one of many galaxies in a vast universe, and second that the farther these galaxies were from us, the faster they appeared to be moving away from us. The ratio between these speeds and distances, which we now call the Hubble Constant, is a fundamental quantity that sets the scale for the size and age of the entire cosmos. For decades, its precise value has been a source of contention among astronomers. Even today, with the most-powerful telescopes at our disposal, tension between different groups remains. Dr. Burns will cover the history of Hubble’s

October 28, 2020

One of the most exciting developments in astronomy is the discovery of thousands of planets around stars other than our Sun. But how do these exoplanets form, and why are they so different from those in our own Solar System? Thanks to powerful new telescopes built in large international collaborations, astronomers are now starting to address these age-old questions scientifically.  With the new Atacama Large Millimeter/submillimeter Array (ALMA), we can zoom in on the dusty clouds between the stars where new stars and planets are born.  Water and a surprisingly rich variety of organic materials are found. In conversation with Emmy Award-

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

John Mulchaey is the director and the Crawford H. Greenewalt Chair of the Carnegie Observatories. He investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also a scientific editor for The Astrophysical Journal and is actively involved in public outreach and education.

Most galaxies including our own Milky Way, exist in collections known as groups, which are the most common galaxy systems and are important laboratories for studying galaxy formation and evolution. Mulchaey studies galaxy groups to understand the processes that affect most

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive