Astronomy Stories
Illustration of a TDE by Robin Dienel, courtesy of Carnegie Science
Pasadena, CA—NASA’s Transiting Exoplanet Survey Satellite (TESS) has for the first time seen the aftermath of a star that was violently ripped apart by a supermassive black hole. Catching...
Explore this Story
Decker French
Pasadena, CA— Carnegie’s K. Decker French was recognized by the Astronomical Society of the Pacific with its Robert J. Trumpler Award, which is presented to a recent Ph.D. graduate...
Explore this Story
Vera measuring spectra with DTM measuring engine, courtesy of Carnegie Science.
Washington, DC—The House approved yesterday a bill to name the Large Synoptic Survey Telescope in honor of...
Explore this Story
An image of the Hubble Space Telescope floating against the background of space courtesy of NASA.
Pasadena, CA—A team of collaborators from Carnegie and the University of Chicago used red giant stars that were observed by the Hubble Space Telescope to make an entirely new measurement of how...
Explore this Story
This cartoon courtesy of Anthony Piro illustrates three possibilities for the origin of the mysterious hydrogen emissions from the Type IA supernova called ASASSN-18tb that were observed by the Carnegie astronomers.
Pasadena, CA—Detection of a supernova with an unusual chemical signature by a team of astronomers led by Carnegie’s Juna Kollmeier—and including Carnegie’s Nidia Morrell...
Explore this Story
Over the past few years, Dr. Sheppard and his team have been performing the largest and deepest survey ever attempted of our Solar System’s fringes. In December 2018, he announced the most-...
Explore this Story
Earth's Moon, public domain image
Pasadena, CA— “Can moons have moons?” This simple question—asked by the four-year old son of Carnegie’s Juna...
Explore this Story
Pasadena, CA— Miguel Roth, director of Carnegie’s Las Campanas Observatory in Chile from 1990 to 2014 and the current representative of the Giant Magellan Telescope Organization (GMTO) in...
Explore this Story

Pages

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie...
Meet this Scientist
We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.  Astronomers have a basic...
Meet this Scientist
The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating...
Meet this Scientist
You May Also Like...
The Milky Way -- Image Credit: Consuelo Gonzalez, Carnegie Institution for Science, The Observatories
Explore this Story
Carnegie astronomer and Vice President of the Giant Magellan Telescope (GMT), Patrick McCarthy, has been appointed as the first Director of the National Science Foundation’s newly formed...
Explore this Story
Pasadena, CA— Carnegie’s Allan Sandage, who died in 2010, was a tremendously influential figure in the field of astronomy. His final paper, published posthumously, focuses on unraveling a surprising...
Explore this Story

Explore Carnegie Science

 "Blue Snowball" planetary nebula, courtesy of Eric Hsiao.
September 10, 2020

Pasadena, CA—An unusual stellar explosion is shining new light on the origins of a specific subgroup of Type Ia supernovae.

Called LSQ14fmg, the exploding star exhibits certain characteristics that are unlike any other supernova. For example, its brightness increases at an extremely slow rate compared to other Type Ia supernovae. Despite this, it is also one of the brightest explosions in its class.

“Type Ia supernovae are violent, fantastically bright explosions of a white dwarf—the remnant of a star that has exhausted its nuclear fuel—which is part of a binary system with another star,” said Carnegie astronomer Mark Phillips, an expert in

Widmanstatten pattern characteristic of iron meteorites, courtesy of Peng Ni.
August 3, 2020

Washington, DC— Work led by Carnegie’s Peng Ni and Anat Shahar uncovers new details about our Solar System’s oldest planetary objects, which broke apart in long-ago collisions to form iron-rich meteorites.  Their findings reveal that the distinct chemical signatures of these meteorites can be explained by the process of core crystallization in their parent bodies, deepening our understanding of the geochemistry occurring in the Solar System’s youth. They are published by Nature Geoscience.

Many of the meteorites that shot through our planet’s atmosphere and crashed on its surface were once part of larger objects that broke up at some point in our

Phoenix Stellar Stream illustration courtesy of Geraint F. Lewis.
July 29, 2020

Pasadena, CA—A team of astronomers including Carnegie’s Ting Li and Alexander Ji discovered a stellar stream composed of the remnants of an ancient globular cluster that was torn apart by the Milky Way’s gravity 2 billion years ago, when Earth’s most-complex lifeforms were single-celled organisms. This surprising finding, published in Nature, upends conventional wisdom about how these celestial objects form.

Imagine a sphere made up of a million stars bound by gravity and orbiting a galactic core. That’s a globular cluster. The Milky Way is home to about 150 of them, which form a tenuous halo that envelops our galaxy.

But the globular cluster

The du Pont telescope, courtesy Matias del Campo
July 20, 2020

Pasadena, CA— Filling in the most-significant gaps in our understanding of the universe’s history, the Sloan Digital Sky Survey (SDSS) released Sunday a comprehensive analysis of the largest three-dimensional map of the cosmos ever created.

The survey, of which Carnegie is an integral member, has been one of the most successful and influential in the history of astronomy. It operates out of both Apache Point Observatory in New Mexico, home of the survey’s original 2.5-meter telescope, and Carnegie’s Las Campanas Observatory in Chile, where it uses Carnegie’s du Pont telescope.

The new results come from the extended Baryon Oscillation

October 5, 2020

Nearly 100 years ago, Carnegie astronomer Edwin Hubble made two truly revolutionary discoveries: First that our Milky Way was only one of many galaxies in a vast universe, and second that the farther these galaxies were from us, the faster they appeared to be moving away from us. The ratio between these speeds and distances, which we now call the Hubble Constant, is a fundamental quantity that sets the scale for the size and age of the entire cosmos. For decades, its precise value has been a source of contention among astronomers. Even today, with the most-powerful telescopes at our disposal, tension between different groups remains. Dr. Burns will cover the history of Hubble’s

October 28, 2020

One of the most exciting developments in astronomy is the discovery of thousands of planets around stars other than our Sun. But how do these exoplanets form, and why are they so different from those in our own Solar System? Thanks to powerful new telescopes built in large international collaborations, astronomers are now starting to address these age-old questions scientifically.  With the new Atacama Large Millimeter/submillimeter Array (ALMA), we can zoom in on the dusty clouds between the stars where new stars and planets are born.  Water and a surprisingly rich variety of organic materials are found. In conversation with Emmy Award-

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Anthony Piro is the George Ellery Hale Distinguished Scholar in Theoretical Astrophysics at the Carnegie Observatories. He is a theoretical astrophysicist studying compact objects, astrophysical explosions, accretion flows, and stellar dynamics. His expertise is in nuclear physics, thermodynamics, condensed matter physics, General Relativity, and fluid and magneto-hydrodanmics. He uses this background  to predict new observational phenomena as well as to understand the key underlying physical mechanisms responsible for current observations. He uses a combination of analytic and simple numerical models to build physical intuition for complex phenomena.

Piro recieved his 

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in

Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our Solar System, which allow us to understand how the Solar System came to be.

The major planets in our Solar System travel around the Sun in fairly circular orbits and on similar planes. However, since the discovery of wildly varying planetary systems around other stars, and given our increased understanding about small, primordial bodies in our celestial neighborhood, the notion that