Astronomy Stories
Pasadena, CA—Pomona College junior and returning Carnegie Observatories intern Sal Fu was awarded...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Las Campanas Observatory
La Serena, Chile—Last week, scientists and staff from Carnegie’s Las Campanas Observatory volunteered for Astroday 2018 at a 170-year-old school in the nearby city of Las Serena, the...
Explore this Story
Called the Hubble Ultra Deep Field, this galaxy-studded view represents a "deep" core sample of the universe, cutting across billions of light-years. Courtesy: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team
In the days after the death of Stephen Hawking, some of our scientists reflected on meeting him, on his contributions to science and science communication, and his impact on humanity.  ALAN BOSS...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Roberto Marcos Molar
Washington, DC—A team of astronomers led by Carnegie’s Meredith MacGregor and Alycia Weinberger detected a massive stellar flare—an energetic explosion of radiation—from the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory
Pasadena, CA— A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date, according to new...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA, Larry Nittler
Washington, DC— Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it...
Explore this Story
National Harbor, MD—How far away is that galaxy?  Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Sloan Digital Sky Survey, SDSS-IV
National Harbor, MD—Astronomers with the Sloan Digital Sky Survey (SDSS) have learned that the chemical composition of a star can exert unexpected influence on...
Explore this Story

Pages

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
Rebecca Bernstein combines observational astronomy with developing new instruments and techniques to study her objects of interest. She focuses on formation and evolution of galaxies by studying the chemistry of objects called extra galactic globular clusters—old, spherical compact groups of...
Meet this Scientist
With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant...
Meet this Scientist
You May Also Like...
The Sloan Digital Sky Survey has been one of the most-successful and influential surveys in the history of astronomy, creating the most-detailed three-dimensional maps of the universe ever made. The...
Explore this Story
Pasadena, CA—Wolf-Rayet stars are very large and very hot. Astronomers have long wondered whether Wolf-Rayet stars are the progenitors of certain types of supernovae. New work from the Palomar...
Explore this Story
Last week, scientists and staff from Carnegie’s Las Campanas Observatory volunteered for Astroday 2018 at a 170-year-old school in the nearby city of Las Serena, the Colegio Seminario Conciliar...
Explore this Story

Explore Carnegie Science

Fotografía de Yuri Beletsky, cortesía de la Carnegie Institution for Science.
April 27, 2020

Pasadena, California— El universo está lleno de miles de millones de galaxias—pero su distribución en el espacio está lejos de ser uniforme. ¿Por qué vemos tantas estructuras en el universo hoy y cómo se formó y creció todo?

Una encuesta de decenas de miles de galaxias, realizada durante 10 años utilizando el telescopio de Magallanes Baade perteneciente al Observatorio Las Campanas de Carnegie en Chile, proporcionó un enfoque para responder a este misterio fundamental. Los resultados, liderados por Daniel Kelson, de Carnegie, fueron publicados en Monthly Notices of the Royal Astronomical Society.

The Magellan telescopes at LCO by Yuri Beletsky.
April 27, 2020

Pasadena, CA— The universe is full of billions of galaxies—but their distribution across space is far from uniform. Why do we see so much structure in the universe today and how did it all form and grow? 

A 10-year survey of tens of thousands of galaxies made using the Magellan Baade Telescope at Carnegie’s Las Campanas Observatory in Chile provided a new approach to answering this fundamental mystery. The results, led by Carnegie’s Daniel Kelson, are published in Monthly Notices of the Royal Astronomical Society. 

“How do you describe the indescribable?” asks Kelson. “By taking an entirely new approach to the problem.

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

 Illustration of DS Tuc AB by M. Weiss, CfA.
March 9, 2020

Pasadena, CA— A new kind of astronomical observation helped reveal the possible evolutionary history of a baby Neptune-like exoplanet.

To study a very young planet called DS Tuc Ab, a Harvard & Smithsonian Center for Astrophysics-led team that included six Carnegie astronomers—Johanna Teske, Sharon Wang, Stephen Shectman, Paul Butler, Jeff Crane, and Ian Thompson—developed a new observational modeling tool. Their work will be published in The Astrophysical Journal Letters and represents the first time the orbital tilt of a planet younger than 45 million years—or about 1/100th the age of the Solar System—has been measured.

“A

No content in this section.

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy

John Mulchaey is the director and the Crawford H. Greenewalt Chair of the Carnegie Observatories. He investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also a scientific editor for The Astrophysical Journal and is actively involved in public outreach and education.

Most galaxies including our own Milky Way, exist in collections known as groups, which are the most common galaxy systems and are important laboratories for studying galaxy formation and evolution. Mulchaey studies galaxy groups to understand the processes that affect most

The earliest galaxies are those that are most distant. Staff associate Dan Kelson is interested in how these ancient relics evolved. The latest generation of telescopes and advanced spectrographs—instruments that analyze light to determine properties of celestial objects—allow astronomers to accurately measure enormous numbers of distant galaxies. Kelson uses the Magellan 6.5-meter telescopes and high-resolution imaging from the Hubble Space Telescope to study distant galaxies.His observations of their masses, sizes and morphologies allow him to directly measure their stars' aging to infer their formation history. Kelson is the principal investigator of the Carnegie-

Juna Kollmeier’s research is an unusual combination—she is as observationally-oriented theorist making predictions that can be compared to current and future observations. Her primary focus is on the emergence of structure in the universe. She combines cosmological hydrodynamic simulations and analytic theory to figure out how the tiny fluctuations in density that were present when the universe was only 300 thousand years old, become the galaxies and black holes that we see now, after 14 billion years of cosmic evolution. 

 She has a three-pronged approach to unravelling the mysteries of the universe. On the largest scales, she studies the intergalactic