Astronomy Stories
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Las Campanas Observatory
La Serena, Chile—Last week, scientists and staff from Carnegie’s Las Campanas Observatory volunteered for Astroday 2018 at a 170-year-old school in the nearby city of Las Serena, the...
Explore this Story
Called the Hubble Ultra Deep Field, this galaxy-studded view represents a "deep" core sample of the universe, cutting across billions of light-years. Courtesy: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team
In the days after the death of Stephen Hawking, some of our scientists reflected on meeting him, on his contributions to science and science communication, and his impact on humanity.  ALAN BOSS...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Roberto Marcos Molar
Washington, DC—A team of astronomers led by Carnegie’s Meredith MacGregor and Alycia Weinberger detected a massive stellar flare—an energetic explosion of radiation—from the...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory
Pasadena, CA— A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date, according to new...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, NASA, Larry Nittler
Washington, DC— Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it...
Explore this Story
National Harbor, MD—How far away is that galaxy?  Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out...
Explore this Story
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Sloan Digital Sky Survey, SDSS-IV
National Harbor, MD—Astronomers with the Sloan Digital Sky Survey (SDSS) have learned that the chemical composition of a star can exert unexpected influence on...
Explore this Story
Pasadena, CA— A team of astronomers led by Carnegie’s Eduardo Bañados used Carnegie’s Magellan telescopes to discover the most-distant supermassive black hole ever observed....
Explore this Story

Pages

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in...
Meet this Scientist
With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant...
Meet this Scientist
Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the...
Meet this Scientist
You May Also Like...
How far away is that galaxy?  Our entire understanding of the Universe is based on knowing the distances to other galaxies, yet this seemingly-simple question turns out to be fiendishly...
Explore this Story
Pasadena, CA—The Big Bang produced lots of hydrogen and helium and a smidgen of lithium. All heavier elements found on the periodic table have been produced by stars over the last 13.7 billion years...
Explore this Story
Audio Pasadena, CA— The structures and star populations of massive galaxies appear to change as they age, but much about how these galaxies formed and evolved remains mysterious. Many of the...
Explore this Story

Explore Carnegie Science

Patrick McCarthy courtesy of GMTO
October 1, 2019

Pasadena, CA—Carnegie astronomer and Vice President of the Giant Magellan Telescope (GMT), Patrick McCarthy, has been appointed as the first Director of the National Science Foundation’s newly formed National Optical-Infrared Astronomy Research Laboratory (NSF’s OIR Lab).

McCarthy has been a member of the GMT project since its inception 15 years ago, helping to bring it from a sketch on a napkin to a 100-plus person organization with 12 U.S. and international partners. In 2008, 20 years into his tenure at Carnegie, McCarthy officially expanded his role when he accepted his current leadership position at GMT.

Working with then-Carnegie Observatories

lustración por Robin Dienel, cortesía de Carnegie Institution for Science.
September 26, 2019

Washington, DC—El satélite Transiting Exoplanet Survey Satellite (TESS) de la NASA ha observado por primera vez las secuelas de una estrella que fue violentamente desgarrada por un agujero negro supermasivo. El haber capturado en pleno desarrollo un evento tan poco común ayudará a los astrónomos a entender estos misteriosos fenómenos.

Las observaciones fueron publicadas en la revista científica The Astrophysical Journal y el estudio fue liderado por el astrónomo de la Institución Carnegie, Thomas Holoien. Holoien es uno de los miembros fundadores de la red internacional de telescopios que realizó el

Illustration of a TDE by Robin Dienel, courtesy of Carnegie Science
September 26, 2019

Pasadena, CA—NASA’s Transiting Exoplanet Survey Satellite (TESS) has for the first time seen the aftermath of a star that was violently ripped apart by a supermassive black hole. Catching such a rare event in action will help astronomers understand these mysterious phenomena.  

The observation is reported in The Astrophysical Journal by a team of astronomers led by Carnegie’s Thomas Holoien, who is a founding member of the international network of telescopes that made the discovery—the Ohio State University based All-Sky Automated Survey for Supernovae (ASAS-SN).

Tidal disruption events, or TDEs, occur when a star gets too close to a

Decker French
July 24, 2019

Pasadena, CA— Carnegie’s K. Decker French was recognized by the Astronomical Society of the Pacific with its Robert J. Trumpler Award, which is presented to a recent Ph.D. graduate “whose research is considered unusually important to astronomy.” French completed her doctorate at the University of Arizona Tucson in 2017 and is currently a Hubble Fellow at the Carnegie Observatories.

Her research focuses on a radio survey of the gas clouds within galaxies that have recently ended the star-forming phase of their evolution.  The lack of star formation in these galaxies has long been assumed to be caused by a depletion of the cold, dense molecular gases

No content in this section.

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas giant and ice giant protoplanets. His observational works centers on the Carnegie Astrometric Planet Search project, which has been underway for the last decade at Carnegie's Las Campanas Observatory in Chile.

While fragmentation is universally recognized as the dominant formation mechanism for binary and multiple stars, there are still major questions. The most important of these

Leopoldo Infante became the director of the Las Campanas Observatory on July 31, 2017.

Since 2009, Infante has been the founder and director of the Centre for Astro-Engineering at the Chilean university. He joined PUC as an assistant professor in 1990 and has been a full professor since 2006. He was one of the creators of PUC’s Department of Astronomy and Astrophysics, and served as its director from 2000 to 2006. He also established the Chilean Astronomical Society (SOCHIAS) and served as its president from 2009 to 2010.

Infante received his B.Sc. in physics at PUC. He then acquired a MSc. and Ph.D. in physics and astronomy from the University of Victoria in

Juna Kollmeier’s research is an unusual combination—she is as observationally-oriented theorist making predictions that can be compared to current and future observations. Her primary focus is on the emergence of structure in the universe. She combines cosmological hydrodynamic simulations and analytic theory to figure out how the tiny fluctuations in density that were present when the universe was only 300 thousand years old, become the galaxies and black holes that we see now, after 14 billion years of cosmic evolution. 

 She has a three-pronged approach to unravelling the mysteries of the universe. On the largest scales, she studies the intergalactic

The earliest galaxies are those that are most distant. Staff associate Dan Kelson is interested in how these ancient relics evolved. The latest generation of telescopes and advanced spectrographs—instruments that analyze light to determine properties of celestial objects—allow astronomers to accurately measure enormous numbers of distant galaxies. Kelson uses the Magellan 6.5-meter telescopes and high-resolution imaging from the Hubble Space Telescope to study distant galaxies.His observations of their masses, sizes and morphologies allow him to directly measure their stars' aging to infer their formation history. Kelson is the principal investigator of the Carnegie-