Astronomy Stories
Carnegie theoretical astrophysicist Anthony Piro engages with the VizLab wall.
Pasadena, CA— In a refurbished Southern California garage, Carnegie astrophysicists are creating the virtual reality-enabled scientific workspace of the future where they will unlock...
Explore this Story
unWISE / NASA/JPL-Caltech / D.Lang (Perimeter Institute).
Pasadena, CA- La quinta generación del Sloan Digital Sky Survey recogió sus primeras observaciones del cosmos a la 1:47 a.m. del 24 de octubre de 2020. Este innovador estudio del cielo...
Explore this Story
unWISE / NASA/JPL-Caltech / D.Lang (Perimeter Institute).
Pasadena, CA— The Sloan Digital Sky Survey’s fifth generation collected its very first observations of the cosmos at 1:47 a.m. MDT on October 24, 2020. This groundbreaking all-sky survey...
Explore this Story
 "Blue Snowball" planetary nebula, courtesy of Eric Hsiao.
Pasadena, CA—An unusual stellar explosion is shining new light on the origins of a specific subgroup of Type Ia supernovae. Called LSQ14fmg, the exploding star exhibits certain characteristics...
Explore this Story
Widmanstatten pattern characteristic of iron meteorites, courtesy of Peng Ni.
Washington, DC— Work led by Carnegie’s Peng Ni and Anat Shahar uncovers new details about our Solar System’s oldest planetary objects, which broke apart in long-ago collisions to...
Explore this Story
The du Pont telescope, courtesy Matias del Campo
Pasadena, CA— Filling in the most-significant gaps in our understanding of the universe’s history, the Sloan Digital Sky Survey (SDSS) released Sunday a comprehensive analysis of the...
Explore this Story
Fotografía de Yuri Beletsky, cortesía de la Carnegie Institution for Science.
Pasadena, California— El universo está lleno de miles de millones de galaxias—pero su distribución en el espacio está lejos de ser uniforme. ¿Por qué...
Explore this Story


The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.  Astronomers have a basic...
Meet this Scientist
Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile...
Meet this Scientist
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
You May Also Like...
A star traveling at ultrafast speeds after being ejected by the supermassive black hole at the heart of our galaxy was spotted by an international team of astronomers including Carnegie’s Ting...
Explore this Story
  Washington, DC—Un grupo de astrónomos del Observatorio Las Campanas, de Carnegie, incluyendo a Mark Phillips y Guillermo Blanc, junto a Miguel Roth de la Organización Telescopio Magallanes Gigante...
Explore this Story
Wendy Freedman, the Crawford H. Greenewalt Director of the Carnegie Observatories and chair of the Giant Magellan Telescope Organization has accepted a position as a University Professor of Astronomy...
Explore this Story

Explore Carnegie Science

Alan Boss
January 14, 2022

Washington, DC— Carnegie’s Alan Boss was named one of 23 new Fellows of the American Astronomical Society. The honorees were chosen for their “extraordinary achievement and service” to the field.

Boss, whose contributions to the fields of astronomy and astrophysics are numerous, was specifically recognized for “innovative theoretical investigations of the formation of stars and exoplanets” as well as “tireless leadership within the exoplanet exploration community in ensuring that NASA executes a credible and successful exoplanet program.”

The AAS fellowship program began in 2020 and its members include professional astronomers

Mars mosaic courtesy of NASA.
January 13, 2022

Washington, DC—Organic molecules found in a meteorite that hurtled to Earth from Mars were synthesized during interactions between water and rocks that occurred on the Red Planet about 4 billion years ago, according to new analysis led by Carnegie’s Andrew Steele and published by Science.  

The meteorite, called Allan Hills (ALH) 84001, was discovered in the Antarctic in 1984 and is considered one of the oldest known projectiles to reach Earth from Mars.  

“Analyzing the origin of the meteorite’s minerals can serve as a window to reveal both the geochemical processes occurring early in Earth’s history and Mars’ potential for

Milky Way and stellar streams, Credit: James osephides and S5 Collaboration.
January 11, 2022

Pasadena CA—A new map of a dozen associations of moving stars—called stellar streams—orbiting within the Milky Way’s halo has brought astronomers one step closer to revealing the properties of the dark matter enveloping our galaxy and shaping the universe.  Accepted for publication in The Astrophysical Journal, the map was produced by an international collaboration of astronomers, including several current and former Carnegie scientists.

“Stellar streams are the shredded remains of neighboring small galaxies and star clusters that are torn apart by the Milky Way,” explained Carnegie’s Josh Simon, a co-author on the paper. “These

Artist conception. Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez
December 23, 2021

Washington, DC—A a perfect seasonal gift to astronomers around the world—the James Webb Space Telescope successfully launched on the morning of December 25.  This next-generation space telescope will drive a new era of discovery—with capabilities that will complement the upcoming era of extremely large ground-based telescopes, including the Giant Magellan Telescope under construction at Carnegie’s Las Campanas Observatory in Chile.

Several Carnegie astronomers will be among the first to lead projects using data from JWST observations. Their planned investigations will span the breadth of expertise at our Observatories and Earth and Planets Laboratory

No content in this section.

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation

Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas giant and ice giant protoplanets. His observational works centers on the Carnegie Astrometric Planet Search project, which has been underway for the last decade at Carnegie's Las Campanas Observatory in Chile.

While fragmentation is universally recognized as the dominant formation mechanism for binary and multiple stars, there are still major questions. The most important of these

Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile, and the first of two cameras for the Magellan Baade telescope. Magellan consortium astronomers use the Baade camera for various IR-imaging projects, while his group focuses on distant galaxies and supernovae.

Until recently, it was difficult to find large numbers of galaxies at near-IR wavelengths. But significant advances in the size of IR detector arrays have allowed the Persson group

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be