Astronomy Stories
Pasadena, CA — Using information gathered from several telescopes, a team of astronomers, including Carnegie’s Eric Murphy, searched the sky for very rarely seen dusty starburst galaxies, formed soon...
Explore this Story
Pasadena, CA—For only the second time in history, a team of scientists--including Carnegie's Michele Fumagalli--have discovered an extremely rare triple quasar system. Their work is published by...
Explore this Story
Pasadena, CA— A team of astronomers including Carnegie’s Ian Thompson have managed to improve the measurement of the distance to our nearest neighbor galaxy and, in the process, refine an...
Explore this Story
Pasadena, CA—Type II supernovae are formed when massive stars collapse, initiating giant explosions. It is thought that stars emit a burst of mass as a precursor to the supernova explosion. If...
Explore this Story
Washington, D.C.— An international team of scientists, including Carnegie’s Paul Butler, has discovered that Tau Ceti, one of the closest and most Sun-like stars, may have five planets. Their work is...
Explore this Story
Pasadena, CA— A team of astronomers including Carnegie’s Daniel Kelson have set a new distance record for finding the farthest galaxy yet seen in the universe. By combining the power of NASA's Hubble...
Explore this Story
Washington, D.C.—Astronomers have discovered a new super-Earth in the habitable zone, where liquid water and a stable atmosphere could reside, around the nearby star HD 40307. It is one of three new...
Explore this Story
Washington, D.C.--Scientists with the Giant Magellan Telescope Organization have completed the most challenging large astronomical mirror ever made. The mirror will be part of the 25-meter Giant...
Explore this Story

Pages

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in...
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Gwen Rudie
Gwen Rudie studies the chemical and physical properties of very distant galaxies and their surrounding gas in order to further our understanding of the processes that are central to the formation and development of galaxies. Critical to this research is our ability to trace the raw...
Meet this Scientist
The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating...
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
You May Also Like...
Pasadena, CA— A team of astronomers from three institutions has developed a new type of telescope camera that makes higher resolution images than ever before, the culmination of 20 years of...
Explore this Story
Washington, D.C.—Type Ia supernovae are violent stellar explosions. Observations of their brightness are used to determine distances in the universe and have shown scientists that the universe is...
Explore this Story
A star traveling at ultrafast speeds after being ejected by the supermassive black hole at the heart of our galaxy was spotted by an international team of astronomers including Carnegie’s Ting...
Explore this Story

Explore Carnegie Science

 "Blue Snowball" planetary nebula, courtesy of Eric Hsiao.
September 10, 2020

Pasadena, CA—An unusual stellar explosion is shining new light on the origins of a specific subgroup of Type Ia supernovae.

Called LSQ14fmg, the exploding star exhibits certain characteristics that are unlike any other supernova. For example, its brightness increases at an extremely slow rate compared to other Type Ia supernovae. Despite this, it is also one of the brightest explosions in its class.

“Type Ia supernovae are violent, fantastically bright explosions of a white dwarf—the remnant of a star that has exhausted its nuclear fuel—which is part of a binary system with another star,” said Carnegie astronomer Mark Phillips, an expert in

Widmanstatten pattern characteristic of iron meteorites, courtesy of Peng Ni.
August 3, 2020

Washington, DC— Work led by Carnegie’s Peng Ni and Anat Shahar uncovers new details about our Solar System’s oldest planetary objects, which broke apart in long-ago collisions to form iron-rich meteorites.  Their findings reveal that the distinct chemical signatures of these meteorites can be explained by the process of core crystallization in their parent bodies, deepening our understanding of the geochemistry occurring in the Solar System’s youth. They are published by Nature Geoscience.

Many of the meteorites that shot through our planet’s atmosphere and crashed on its surface were once part of larger objects that broke up at some point in our

Phoenix Stellar Stream illustration courtesy of Geraint F. Lewis.
July 29, 2020

Pasadena, CA—A team of astronomers including Carnegie’s Ting Li and Alexander Ji discovered a stellar stream composed of the remnants of an ancient globular cluster that was torn apart by the Milky Way’s gravity 2 billion years ago, when Earth’s most-complex lifeforms were single-celled organisms. This surprising finding, published in Nature, upends conventional wisdom about how these celestial objects form.

Imagine a sphere made up of a million stars bound by gravity and orbiting a galactic core. That’s a globular cluster. The Milky Way is home to about 150 of them, which form a tenuous halo that envelops our galaxy.

But the globular cluster

The du Pont telescope, courtesy Matias del Campo
July 20, 2020

Pasadena, CA— Filling in the most-significant gaps in our understanding of the universe’s history, the Sloan Digital Sky Survey (SDSS) released Sunday a comprehensive analysis of the largest three-dimensional map of the cosmos ever created.

The survey, of which Carnegie is an integral member, has been one of the most successful and influential in the history of astronomy. It operates out of both Apache Point Observatory in New Mexico, home of the survey’s original 2.5-meter telescope, and Carnegie’s Las Campanas Observatory in Chile, where it uses Carnegie’s du Pont telescope.

The new results come from the extended Baryon Oscillation

October 5, 2020

Nearly 100 years ago, Carnegie astronomer Edwin Hubble made two truly revolutionary discoveries: First that our Milky Way was only one of many galaxies in a vast universe, and second that the farther these galaxies were from us, the faster they appeared to be moving away from us. The ratio between these speeds and distances, which we now call the Hubble Constant, is a fundamental quantity that sets the scale for the size and age of the entire cosmos. For decades, its precise value has been a source of contention among astronomers. Even today, with the most-powerful telescopes at our disposal, tension between different groups remains. Dr. Burns will cover the history of Hubble’s

October 28, 2020

One of the most exciting developments in astronomy is the discovery of thousands of planets around stars other than our Sun. But how do these exoplanets form, and why are they so different from those in our own Solar System? Thanks to powerful new telescopes built in large international collaborations, astronomers are now starting to address these age-old questions scientifically.  With the new Atacama Large Millimeter/submillimeter Array (ALMA), we can zoom in on the dusty clouds between the stars where new stars and planets are born.  Water and a surprisingly rich variety of organic materials are found. In conversation with Emmy Award-

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5.

The survey selection is done using the Spitzer Space Telescope Legacy fields, which provides as close a selection by stellar mass as possible.

Using the IMACS infrared camera, the survey goal is to study galaxies down to low light magnitudes. The goal is to reduce the variance in the density of massive galaxies at these distances and times to accurately trace the evolution of the galaxy mass

Like some other Carnegie astronomers, staff associate Jeffrey Crane blends science with technology. His primary interests are instrumentation, the Milky Way and the neighboring Local Group of galaxies, in addition to extrasolar planets. In 2004, then-research associate Crane joined Steve Shectman, Ian Thompson, and the Carnegie team to design the Planet Finder Spectrograph (PFS), now installed and operational on the Magellan Clay telescope.

Radial velocities are the speeds and directions of stars moving away from or toward the Earth.  Extrasolar planet hunters use them to detect the telltale wobbles of stars that are gravitationally tugged by orbiting planets. Astronomical

Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the pace and character of star birth, and how large galaxies form from earlier, smaller systems.

Dressler is also intricately involved in instrumentation. He led the effort for the Inamori Magellan Areal Spectrogrph (IMACS), a wide-field imager and multi-object spectrograph which became operational in 2003 on the Baade telescope at Carnegie’s Las Campanas Observatory. Spectrographs

Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our Solar System, which allow us to understand how the Solar System came to be.

The major planets in our Solar System travel around the Sun in fairly circular orbits and on similar planes. However, since the discovery of wildly varying planetary systems around other stars, and given our increased understanding about small, primordial bodies in our celestial neighborhood, the notion that

The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating about in intergalactic space, largely in the form of ionized hydrogen gas.

 Michael Rauch is interested in all aspects of the intergalactic medium. He uses large telescopes, like the Magellans, to take spectra—light that reveals the chemical makeup of distant objects— of background quasars, which are highly energetic and extremely remote. He is looking for evidence of