Astronomy Stories
Pasadena, CA— Astronomers, including Carnegie’s Yuri Beletsky, took precise measurements of the closest pair of failed stars to the Sun, which suggest that the system harbors a third, planetary-mass...
Explore this Story
Pasadena, CA—A team of researchers including Carnegie’s Mansi Kasliwal and John Mulchaey used a novel astronomical survey software system—the intermediate Palomar Transient Factory (iPTF)—to link a...
Explore this Story
October 8, 2013 A new planet-hunting survey has revealed planetary candidates with orbital periods as short as four hours and so close to their host stars that they are nearly skimming the stellar...
Explore this Story
Pasadena, CA— A team of astronomers from three institutions has developed a new type of telescope camera that makes higher resolution images than ever before, the culmination of 20 years of...
Explore this Story
Pasadena, CA— Blazars are the brightest of active galactic nuclei, and many emit very high-energy gamma rays. New observations of a blazar known as PKS 1424+240 show that it is the most-distant known...
Explore this Story
Washington, D.C.—A team of scientists, including Carnegie’s Alan Boss, has discovered two Earth-like planets in the habitable orbit of a Sun-like star. Their work is published in Science Express.  ...
Explore this Story
Pasadena, CA— Supernovae were always thought to occur in two main varieties. But a team of astronomers including Carnegie’s Wendy Freedman, Mark Phillips and Eric Persson is reporting the discovery...
Explore this Story
Pasadena, CA — Using information gathered from several telescopes, a team of astronomers, including Carnegie’s Eric Murphy, searched the sky for very rarely seen dusty starburst galaxies, formed soon...
Explore this Story

Pages

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is...
Explore this Project
We are all made of stardust. Almost all of the chemical elements were produced by nuclear reactions in the interiors of stars. When a star dies a fraction of the elements is released into the inter-stellar gas clouds, out of which successive generations of stars form.  Astronomers have a basic...
Meet this Scientist
Director Emeritus, George Preston has been deciphering the chemical evolution of stars in our Milky Way for a quarter of a century. He and Steve Shectman started this quest using a special technique to conduct a needle-in-the-haystack search for the few, first-generation stars, whose chemical...
Meet this Scientist
Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes....
Meet this Scientist
You May Also Like...
Washington, DC—A group of astronomers from Carnegie’s Las Campanas Observatory including Mark Phillips and Guillermo Blanc, along with Miguel Roth from the Giant Magellan Telescope Organization,...
Explore this Story
Pasadena, CA— Supernovae were always thought to occur in two main varieties. But a team of astronomers including Carnegie’s Wendy Freedman, Mark Phillips and Eric Persson is reporting the discovery...
Explore this Story

Explore Carnegie Science

February 26, 2020

Washington, DC— Carnegie astronomers Stephen Shectman and Alycia Weinberger were selected for the inaugural class of Fellows of the American Astronomical Society in recognition of their “extraordinary achievement and service” to the field. 

The newly established accolade will honor members of the organization for original research, innovative technique and instrumentation development, significant public outreach and educational efforts, and other noteworthy contributions to the society. To launch the program, the AAS selected 200 “legacy” fellows, including Shectman and Weinberger. Carnegie trustee Sandra Faber of UC Santa Cruz and former-

Vera Rubin, courtesy of the Carnegie Institution for Science
January 6, 2020

Washington, DC— The Large Synoptic Survey Telescope and its joint funding agencies, the National Science Foundation and Department of Energy, announced Monday that it will be renamed the Vera C. Rubin Observatory in honor of the late Carnegie astronomer whose research confirmed the existence of dark matter.

Rubin received the National Medal of Science in 1993 for her “significant contributions to the realization that the universe is more complex and more mysterious than had been imagined.” She died in 2016.

Rubin revealed that stars at varying distances from the center of a spiral galaxy orbit at the same speed, rather than at slower speeds farther from

Illustration by James Josephides, courtesy of Swinburne Astronomy Productions.
November 12, 2019

Pasadena, CA—A star traveling at ultrafast speeds after being ejected by the supermassive black hole at the heart of our galaxy was spotted by an international team of astronomers including Carnegie’s Ting Li and Alex Ji. Their work is published by Monthly Notices of the Royal Astronomical Society. Hurtling at the blistering speed of 6 million kilometers per hour, the star is moving so fast that it will leave the Milky Way and head into intergalactic space.

Called S5-HVS1, the star was discovered in the Grus, or Crane, constellation by lead author Sergey Koposov of Carnegie Mellon University as part of the Southern Stellar Stream Spectroscopic Survey led by Carnegie

Ancient gas cloud courtesy of the Max Planck Society.
November 8, 2019

Washington, DC— The discovery of a 13 billion-year-old cosmic cloud of gas enabled a team of Carnegie astronomers to perform the earliest-ever measurement of how the universe was enriched with a diversity of chemical elements.  Their findings reveal that the first generation of stars formed more quickly than previously thought. The research, led by recent Carnegie-Princeton fellow Eduardo Bañados and including Carnegie’s Michael Rauch and Tom Cooper, is published by The Astrophysical Journal.

The Big Bang started the universe as a hot, murky soup of extremely energetic particles that was rapidly expanding.  As this material spread out, it cooled,

No content in this section.

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

Juna Kollmeier’s research is an unusual combination—she is as observationally-oriented theorist making predictions that can be compared to current and future observations. Her primary focus is on the emergence of structure in the universe. She combines cosmological hydrodynamic simulations and analytic theory to figure out how the tiny fluctuations in density that were present when the universe was only 300 thousand years old, become the galaxies and black holes that we see now, after 14 billion years of cosmic evolution. 

 She has a three-pronged approach to unravelling the mysteries of the universe. On the largest scales, she studies the intergalactic

Stephen Shectman blends his celestial interests with his gift of developing novel telescope instrumentation. He investigates the large-scale structure of the galaxy distribution; searches for ancient stars that have few elements; develops astronomical instruments; and constructs large telescopes. Shectman was the former project scientist for Magellan and is largely responsible for the superb quality of 6.5-meter telescopes. He is now a member of the Giant Magellan Telescope Project Scientists’ Working Group.

 To understand large-scale structure, Shectman has participated in several galaxy surveys. He and collaborators discovered a particularly large void in the galaxy

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-