Astronomy Stories
Ben Shappee, Hubble, Carnegie-Princeton Fellow, summarizes results for the Shappee et al. paper, "The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-Time Observations, First-...
Explore this Story
Slate's Bad Astronomy says a photo of Orion's M43 nebula by Carnegie's Yuri Beletsky and Igor Chilingarian of the Harvard–Smithsonian Center for Astrophysics might be...
Explore this Story
With the New Horizons historic flyby of Pluto next week, imagine how excited we were a few weeks ago to unearth a set of plates from 1925 in our vault that include Pluto--five years before Pluto was...
Explore this Story
Dr. John Mulchaey Staff Scientist Carnegie Observatories The light we see with our eyes only tells a small part of the Universe's story. To get a complete picture of how the Universe works,...
Explore this Story
Pasadena, CA— The Giant Magellan Telescope (GMT) has passed a major milestone as 11 international partners—including Carnegie—approved its construction, which secures the project...
Explore this Story
Pasadena, CA— Type Ia supernovae are violent stellar explosions that shine as some of the brightest objects in the universe. But there are still many mysteries surrounding their origin—...
Explore this Story
Type Ia supernovae are violent stellar explosions that shine as some of the brightest objects in the universe. But there are still many mysteries surrounding their origin—what kind of star...
Explore this Story

Pages

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Guillermo Blanc wants to understand the processes by which galaxies form and evolve over the course of the history of the universe. He studies local galaxies in the “present day” universe as well as very distant and therefore older galaxies to observe the early epochs of galaxy...
Meet this Scientist
John Mulchaey is the director and the Crawford H. Greenewalt Chair of the Carnegie Observatories. He investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also...
Meet this Scientist
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
You May Also Like...
John Mulchaey Director and Crawford H. Greenewalt Chair of the Carnegie Observatories was presented with a Humanitarian STAR Award by the honor’s founding body—the Rotary Club...
Explore this Story
Type Ia supernovae are violent stellar explosions that shine as some of the brightest objects in the universe. But there are still many mysteries surrounding their origin—what kind of star...
Explore this Story
Pasadena, CA – The board of directors of the Giant Magellan Telescope Organization (GMTO) has informed the National Science Foundation (NSF) that they will not participate in an upcoming funding...
Explore this Story

Explore Carnegie Science

Fotografía de Yuri Beletsky, cortesía de la Carnegie Institution for Science.
April 27, 2020

Pasadena, California— El universo está lleno de miles de millones de galaxias—pero su distribución en el espacio está lejos de ser uniforme. ¿Por qué vemos tantas estructuras en el universo hoy y cómo se formó y creció todo?

Una encuesta de decenas de miles de galaxias, realizada durante 10 años utilizando el telescopio de Magallanes Baade perteneciente al Observatorio Las Campanas de Carnegie en Chile, proporcionó un enfoque para responder a este misterio fundamental. Los resultados, liderados por Daniel Kelson, de Carnegie, fueron publicados en Monthly Notices of the Royal Astronomical Society.

The Magellan telescopes at LCO by Yuri Beletsky.
April 27, 2020

Pasadena, CA— The universe is full of billions of galaxies—but their distribution across space is far from uniform. Why do we see so much structure in the universe today and how did it all form and grow? 

A 10-year survey of tens of thousands of galaxies made using the Magellan Baade Telescope at Carnegie’s Las Campanas Observatory in Chile provided a new approach to answering this fundamental mystery. The results, led by Carnegie’s Daniel Kelson, are published in Monthly Notices of the Royal Astronomical Society. 

“How do you describe the indescribable?” asks Kelson. “By taking an entirely new approach to the problem.

Caltech logo
March 17, 2020

The Carnegie Institution for Science is consolidating our California research departments into an expanded presence in Pasadena. With this move, we are building on our existing relationship with Caltech, with a goal of broadening our historic collaborations in astronomy and astrophysics and pursuing new opportunities in ecology and plant biology that will support the global fight against climate change.

This plan, which affects our research operations in Pasadena and Palo Alto, reflects Carnegie’s ongoing efforts to extend our leadership in space, Earth, and life sciences and to enhance our ability to explore new frontiers.

In selecting our Pasadena location, we

 Illustration of DS Tuc AB by M. Weiss, CfA.
March 9, 2020

Pasadena, CA— A new kind of astronomical observation helped reveal the possible evolutionary history of a baby Neptune-like exoplanet.

To study a very young planet called DS Tuc Ab, a Harvard & Smithsonian Center for Astrophysics-led team that included six Carnegie astronomers—Johanna Teske, Sharon Wang, Stephen Shectman, Paul Butler, Jeff Crane, and Ian Thompson—developed a new observational modeling tool. Their work will be published in The Astrophysical Journal Letters and represents the first time the orbital tilt of a planet younger than 45 million years—or about 1/100th the age of the Solar System—has been measured.

“A

No content in this section.

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Staff member emeritus François Schweizer studies galaxy assembly and evolution by observing nearby galaxies, particularly how collisions and mergers affect their properties. His research has added to the awareness that these events are dominant processes in shaping galaxies and determining their stellar and gaseous contents.

When nearby galaxies collide and merge they yield valuable clues about processes that occurred much more frequently in the younger, distant universe. When two gas-rich galaxies collide, their pervasive interstellar gas gets compressed, clumps into dense clouds, and fuels the sudden birth of billions of new stars and thousands of star clusters.

Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life.

Alexander studies meteorites to determine what went on before and during the formation of our Solar System. Meteorites are fragments of asteroids—small bodies that originated between Mars and Jupiter—and are likely the last remnants of objects that gave rise to the terrestrial planets. He is particularly interested in the analysis of chondrules, millimeter-size spherical objects that are the dominant constituent of the most primitive

Rebecca Bernstein combines observational astronomy with developing new instruments and techniques to study her objects of interest. She focuses on formation and evolution of galaxies by studying the chemistry of objects called extra galactic globular clusters—old, spherical compact groups of stars that are gravitationally bound. She also studies the stellar components of clusters of galaxies and is engaged in various projects related to dark matter and dark energy—the invisible matter and repulsive force that make up most of the universe.

 Although Bernstein joined Carnegie as a staff scientist in 2012, she has had a long history of spectrographic and imaging

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de