Astronomy Stories
It isn’t often that our Capital Science Evening speaker hints at soon-to-be-breaking news right from the stage. Tuesday night, Pierre Cox, Director of the Atacama Large Milimiter/submillimeter...
Explore this Story
Over the past few years, Dr. Sheppard and his team have been performing the largest and deepest survey ever attempted of our Solar System’s fringes. In December 2018, he announced the most-...
Explore this Story
Earth's Moon, public domain image
Pasadena, CA— “Can moons have moons?” This simple question—asked by the four-year old son of Carnegie’s Juna...
Explore this Story
Pasadena, CA— Miguel Roth, director of Carnegie’s Las Campanas Observatory in Chile from 1990 to 2014 and the current representative of the Giant Magellan Telescope Organization (GMTO) in...
Explore this Story
An artist’s conception of a type Ia supernova exploding, courtesy of ESO.
Pasadena, CA—New work from the Carnegie Supernova Project provides the best-yet calibrations for using type Ia supernovae to measure cosmic distances, which has implications for our...
Explore this Story
Pan-STARRS image showing the host galaxy of the newly discovered supernova ASASSN-18bt
Pasadena, CA—A supernova discovered by an international group of astronomers including Carnegie’s Tom Holoien and...
Explore this Story
SDSS/Caltech/Keck
Pasadena, CA—Carnegie’s Anthony Piro was part of a Caltech-led team of astronomers who observed the peculiar death of a massive...
Explore this Story
John Graham
Washington, DC—Carnegie astronomer John Graham—who also served during different periods as both Vice President and Secretary of the American Astronomical Society—died at home in...
Explore this Story

Pages

The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the...
Explore this Project
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar...
Meet this Scientist
Juna Kollmeier’s research is an unusual combination—she is as observationally-oriented theorist making predictions that can be compared to current and future observations. Her primary focus is on the emergence of structure in the universe. She combines cosmological hydrodynamic...
Meet this Scientist
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
You May Also Like...
Pasadena, CA—A team of researchers including Carnegie’s Mansi Kasliwal and John Mulchaey used a novel astronomical survey software system—the intermediate Palomar Transient Factory (iPTF)—to link a...
Explore this Story
SN2015J, a very bright and peculiar supernova, which initially did not have a certain home, now has received its happy ending.  Discovered on April 27, 2015, by the Siding Springs Observatory in...
Explore this Story
New work from the Carnegie Supernova Project provides the best-yet calibrations for using type Ia supernovae to measure cosmic distances, which has implications for our understanding of how fast the...
Explore this Story

Explore Carnegie Science

Earth's Moon, public domain image
January 23, 2019

Pasadena, CA— “Can moons have moons?”

This simple question—asked by the four-year old son of Carnegie’s Juna Kollmeier—started it all.  Not long after this initial bedtime query,  Kollmeier was coordinating a program at the Kavli Institute for Theoretical Physics (KITP)  on the Milky Way while her one-time college classmate Sean Raymond of Université de Bordeaux was attending a parallel KITP program on the dynamics of Earth-like planets.   After discussing this very simple question at a seminar, the two joined forces to solve it.  Their findings are the basis of a paper published in Monthly Notices

December 14, 2018

Pasadena, CA— Miguel Roth, director of Carnegie’s Las Campanas Observatory in Chile from 1990 to 2014 and the current representative of the Giant Magellan Telescope Organization (GMTO) in Chile was awarded the Bernardo O’Higgins Order by the Chilean Foreign Affairs Ministry in Santiago today. The honor is in recognition “of his contribution to the development of astronomy in Chile, and for inspiring appreciation and knowledge of astronomy among students and people of all ages.”

The award is the highest civilian honor for non-Chileans. O’Higgins was one of the founders of the Chilean Republic. The award was established in 1965 to recognize

An artist’s conception of a type Ia supernova exploding, courtesy of ESO.
December 11, 2018

Pasadena, CA—New work from the Carnegie Supernova Project provides the best-yet calibrations for using type Ia supernovae to measure cosmic distances, which has implications for our understanding of how fast the universe is expanding and the role dark energy may play in driving this process. Led by Carnegie astronomer Chris Burns, the team’s findings are published in The Astrophysical Journal.  

Type Ia supernovae are fantastically bright stellar phenomena. They are violent explosions of a white dwarf—the crystalline remnant of a star that has exhausted its nuclear fuel—which is part of a binary system with another star.

In addition to being

Pan-STARRS image showing the host galaxy of the newly discovered supernova ASASSN-18bt
November 29, 2018

Pasadena, CA—A supernova discovered by an international group of astronomers including Carnegie’s Tom Holoien and Maria Drout, and led by University of Hawaii’s Ben Shappee, provides an unprecedented look at the first moments of a violent stellar explosion. The light from the explosion's first hours showed an unexpected pattern, which Carnegie's Anthony Piro analyzed to reveal that the genesis of these phenomena is even more mysterious than previously thought.

Their findings are published in a trio of papers in The Astrophysical Journal and The Astrophysical Journal Letters. (You can read them here, here, and here.)

Type Ia supernovae are

No content in this section.

The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 

The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array Camera (IRAC) on Spitzer Space Telescope. The team has demonstrated that the mid-infrared period-luminosity relation for Cepheids, variable stars used to determine distances and the rate of the expansion,  at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

The entire universe—galaxies, stars, and planets—originally condensed from a vast network of tenuous, gaseous filaments, known as the intergalactic medium, or the gaseous cosmic web. Most of the matter in this giant reservoir has never been incorporated into galaxies; it keeps floating about in intergalactic space, largely in the form of ionized hydrogen gas.

 Michael Rauch is interested in all aspects of the intergalactic medium. He uses large telescopes, like the Magellans, to take spectra—light that reveals the chemical makeup of distant objects— of background quasars, which are highly energetic and extremely remote. He is looking for evidence of

Like some other Carnegie astronomers, staff associate Jeffrey Crane blends science with technology. His primary interests are instrumentation, the Milky Way and the neighboring Local Group of galaxies, in addition to extrasolar planets. In 2004, then-research associate Crane joined Steve Shectman, Ian Thompson, and the Carnegie team to design the Planet Finder Spectrograph (PFS), now installed and operational on the Magellan Clay telescope.

Radial velocities are the speeds and directions of stars moving away from or toward the Earth.  Extrasolar planet hunters use them to detect the telltale wobbles of stars that are gravitationally tugged by orbiting planets. Astronomical

Looking far into space is looking back in time. Staff astronomer emeritus Alan Dressler began his career at Carnegie some years ago as a Carnegie Fellow. Today, he and colleagues use Magellan and the Hubble Space Telescope to study galaxy evolution—how galaxy structures and shapes change, the pace and character of star birth, and how large galaxies form from earlier, smaller systems.

Dressler is also intricately involved in instrumentation. He led the effort for the Inamori Magellan Areal Spectrogrph (IMACS), a wide-field imager and multi-object spectrograph which became operational in 2003 on the Baade telescope at Carnegie’s Las Campanas Observatory. Spectrographs